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Computational Science and Engineering
in 2020

Lorena A. Barba

The George Washington University

& IN 1995, just one year after the founding

of IEEE Computational Science & Engineering—

the precursor of CiSE—founding Editor-in-Chief

Ahmed H. Sameh wrote that the board’s goal

was “making this magazine the flagship of all

aspects of computational science and engineer-

ing.”1 What was it like at the time? 1995 marks

the beginning of the dot-com boom. That year,

Amazon and eBay first opened their digital

doors, the Intel Pentium Pro was released, IBM

unveiled Deep Blue, and the NumPy library for

array computing in Python was first introduced.

It was also the year that Peter Norvig and Stuart

Russell published their classic textbook on

artificial intelligence.2 The University of Texas at

Austin established its program in computational

and applied mathematics, which J. Tinsley Oden

announced in CS&E.3 The dozen tenure-track

positions opened with the new program and

institute were housed in the departments of

mathematics, computer science, engineering

mechanics, aerospace engineering, and other

engineering specialties. It was conceived as a

broadly interdisciplinary program, and that has

been the hallmark of computational science and

engineering across time.

The interdisciplinary essence of computa-

tional science has placed the field in the

bewildering position of being central to vast

swaths of new discoveries while also lacking rec-

ognition and support to flourish. A PITAC report

in 2005 declared that “much of the promise of

computational science remains unrealized due to

inefficiencies within the R&D infrastructure and

lack of strategic planning and execution.”4 It

called for supporting computational science as a

“national imperative for research and education

in the 21st century.” The core hurdle was and is

discipline-based research silos interfering with

the integration of diverse skills and knowledge

sets needed for advanced computational

research. Quoting the report, “inadequate and

outmoded educational structures within acade-

mia [. . .] leave computational science students to

flounder amid competing departments.” This was

ten years after the founding of UT Austin’s new

institute (now called the Oden Institute for

Computational Engineering and Sciences,

https://www.oden.utexas.edu) and ten years

before the Department of Computational Mathe-

matics, Science, and Engineering was established

at Michigan State University (https://cmse.msu.

edu). It was also the year when we faced up to the

reality that the “free lunch” of continued increases

in processor performance was over.5 Clock

speeds reached the 3-GHz level—where they

remain to this day—and major manufacturers

turned to multicore architectures. The clock race

ended and a mainstream 4-GHz processor never

landed. “Concurrency really is hard,” Herb Sutter

Digital Object Identifier 10.1109/MCSE.2020.3027933

Date of current version 9 October 2020.
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wrote, and so it became harder to train computa-

tional scientists.

The landscape of computing soon became

even more thorny, as programmable general-

purpose GPUs hit the scene. In 2007, NVIDIA

released the CUDA software development kit and

the first graphics processors designed for com-

puting. While the trend then called “GPGPU”

picked up speed, the first highly influential appli-

cations of GPUs for deep learning were published,

and a new era unleashed.6 Many of us went on

long expeditions of adapting our best-loved algo-

rithms for solving physical models formulated as

differential equations to the new architecture and

programming models. Some were decidedly suc-

cessful, like those in the molecular modeling and

quantum chemistry communities, for example.

But for most it has either been a grind, or a trend

to be avoided. In the last ten years, to cap all this,

computational science was inundated with new

approaches like machine learning and data-based

models. Now, the trendy exploit is to try “physics-

informed” neural networks in applications.

Computational science and engineering for

many years were dominated by physical simula-

tions based onmathematical modeling and numer-

ical analysis. This is reflected in the articles

CiSE published, on topics like computational elec-

tromagnetics, molecular dynamics for modeling

macroscopic material properties, simulations of

the earth’s mantle convection-driven flow, quan-

tum andmolecularmechanics combined for chem-

istry applications, and geographic environmental

modeling (all in 1995). Scope broadened to areas

like computation in medicine (2000, issue 5), data

mining (2002, issue 4), and cloud computing (2009,

issue 4). Notably, two special-issue themes were

harbingers of topics trending today: Python for sci-

entific computing (2007, issue 3) and reproducible

research (2009, issue 1). In the first, some of CiSE’s

most highly cited articles appear, including the

Matplotlib paper7 with more than 11400 citations

indexed by Google Scholar as of this writing. The

theme reappeared in 2011 (issue 2), with an article

on the NumPy array structure that has amassed

more than 6000 citations, so far. In more recent

years, it has been hard to resist the onslaught of

interest in machine learning and related topics.

CiSE first covered machine learning in 2013 (issue

5), highlighting applications likematerials sciences

and climate informatics. The pull of computer

science perspectives, versus computational sci-

ence, began to sway the content before long. Do

we need to reclaim focus?

As interim Editor-in-Chief for the year 2020,

and now appointed the EiC for the three-year

period starting 2021, I have been reflecting on

what focus I wish to bring to CiSE. Certainly, the

early concerns about the hurdles of interdisci-

plinarity and the educational needs of the new

generations of computational scientists are high

on my list. Revisiting the role of the Python eco-

system in computational science seems timely

now, with the recent convergence with GPU com-

puting via projects to develop open-source

libraries giving access to GPU devices from

Python programs. In general, I aim for a height-

ened emphasis on open-source research soft-

ware, combined with attention for transparency

and reproducibility. I was a member of the study

committee of the National Academies that pro-

duced the consensus report on Replicability and

Reproducibility in Science last year,8 and it has

been a long-time area of focus in my own

research. Even if CiSE featured the topic in 2009

and 2012, it has trended mainstream only

recently—it is time to integrate those considera-

tions firmly into the publication process.

In 2017, Reproducible Research became a new

peer-reviewed track for CiSE, with outgoing EiC

George Thiruvathukal and myself as coeditors.

There, we have spearheaded practices enhancing

transparency and supporting open science, like

asking reviewers if they want to participate in

open peer review (open identity, and open report)

and asking authors to post a preprint of their

manuscript. Reviewers who opt-in have deposited

their review reports in services like Figshare or

Authorea (https://www.authorea.com/inst/18992),

and authors cite the review reports with the

preprint identifiers, acknowledging the reviewer

contributions. This open-review process works

within the existing systems, and was approved by

the Computer Society VP of Publications in April

2018. I am interested in expanding this model to

other submissions, perhaps some special issues.

As to topical focus, my goal is to realign CiSE

with its origins of publishing “articles that help

define the field of computational science and engi-

neering, emphasizing significant computational con-

tributions to science and engineering discipline”

(citing first EIC Ahmed Sameh’s launch editorial).

From the Editor-in-Chief
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A higher aspiration was alluded to by past

EIC Francis Sullivan on occasion of the magazine’s

20th anniversary, to be “a broad-based pub-

lication. . . about the fundamental role of computa-

tion in all aspects of human civilization.”9

In this issue, CiSE tackles the historic menace

to our way of life that is the COVID-19 pandemic,

and the role of computing and data science in our

battle against it. This is a milestone for CiSE, and

it was made possible by the formidable efforts of

editors, authors, and reviewers to produce a

high-quality issue with a breakneck timeline. The

Computer Society recognizes this effort and the

importance of the theme by making all these

articles free to read on the Computer Society Digi-

tal Library for six months. I hope they will be read

widely and illuminate the power of computing as

a scientific tool in the service of society.

To close this editorial, I would like to recog-

nize the new editors who accepted my invitation

to join the board this year:

1) Anne Elster (Novel Architectures), Professor

of Computer Science and HPC, Norwegian

University of Science and Technology.

2) Dirk Colby (Education), Director of HPC Stud-

ies, Computational Mathematics, Science and

Engineering, Michigan State University.

3) Sharon Broude Geva (Education), Director

of Advanced Research Computing, University

of Michigan.

4) Michela Taufer, Dongarra Professor in High

Performance Computing, University of Ten-

nessee Knoxville.

5) Karla Morris (Software Engineering), Princi-

pal Member of Technical Staff at Sandia

National Laboratories.

6) Ilkay Altintas (Data Track), Chief Data Sci-

ence Officer at the San Diego Supercomputer

Center, UCSD.

7) Anna-Karin Tornberg, Professor of Numerical

Analysis, Sweedish Royal Institute of

Technology.

8) Ewa Deelman, Principal Scientist, USC Infor-

mation Sciences Institute, University of

Southern California.

Starting January 2021, we welcome:

1) Kelly Gaither (Visualization Corner), Director

of Visualization at the Texas Advanced Com-

puting Center (TACC), University of Texas.

2) Karen Willcox, Professor of Aerospace Engi-

neering and Engineering Mechanics and Direc-

tor of the Oden Institute for Computational

Engineering and Sciences, University of Texas.

3) John M. Shalf (Leadership Computing),

Department Head for Computer Science,

Lawrence Berkeley National Laboratory.

4) Kathryn Mohror (Leadership Computing),

Computer Scientist at Lawrence Livermore

National Laboratory.

I look forward to working with all of them,

and our continuing editors, to realize the aspira-

tions for CiSE to be the flagship of all aspects

of computational science and engineering.

& REFERENCES

1. A. Sameh, “ Looking back, looking forward: Evaluation

and vision,” IEEE Comput. Sci. Eng., vol. 2, no. 2, p. 1,

Summer 1995, doi: 10.1109/MCSE.1995.10010.

2. P. Norvig and S. Russell, Artificial Intelligence:

A Modern Approach. Englewood Cliffs, NJ, USA:

Prentice-Hall, 1995, doi: 10.1109/99.388942.

3. J. T. Oden, “UT Austin establishes computational and

applied mathematics program,” IEEE Comput. Sci.

Eng., vol. 2, no. 2, pp. 7–9, Summer 1995, doi:

10.1109/99.388942.

4. R. Bajcsy et al., “Computational science: ensuring

America’s competitiveness,” President’s Inf. Technol.

Advisory Committee, Arlington, VA, USA, 2005. [Online].

Available: https://apps.dtic.mil/sti/pdfs/ADA462840.pdf

5. H. Sutter, “The free lunch is over: A fundamental turn

toward concurrency in software,” Dr. Dobb’s J.,

vol. 30, no. 3, pp. 202–210, 2005.

6. R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale

deep unsupervised learning using graphics

processors,” in Proc. 26th Annu. Int. Conf. Mach. Learn.,

2009, pp. 873–880, doi: 10.1145/1553374.1553486.

7. J. D. Hunter, “Matplotlib: A 2D graphics environment,”

Comput. Sci. Eng., vol. 9, no. 3, pp. 90–95,

May/Jun. 2007, doi: 10.1109/MCSE.2007.55.

8. National Academies of Sciences, Engineering, and

Medicine, Reproducibility and Replicability in Science.

Washington, DC, USA: Nat. Acad. Press, 2019, doi:

10.17226/25303.

9. F. Sullivan, N. Chonacky, I. Beichl, and G. K.

Thiruvathukal, “Former CiSE EICs reflect on the

magazine’s 20th anniversary,” Comput. Sci. Eng.,

vol. 20, no. 1, pp. 3–7, Jan./Feb. 2018, doi: 10.1109/

MCSE.2018.011111118.

November/December 2020 7

http://dx.doi.org/10.1109/MCSE.1995.10010
http://dx.doi.org/10.1109/99.388942
http://dx.doi.org/10.1109/99.388942
https://apps.dtic.mil/sti/pdfs/ADA462840.pdf
http://dx.doi.org/10.1145/1553374.1553486
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.17226/25303
http://dx.doi.org/10.1109/MCSE.2018.011111118
http://dx.doi.org/10.1109/MCSE.2018.011111118


Keep up with the latest IEEE Computer Society publications and activities wherever you are. 

Follow us:

stay connected.

 � | @ComputerSociety

 � | facebook.com/IEEEComputerSociety

 � | IEEE Computer Society

 �  | youtube.com/ieeecomputersociety

 � | instagram.com/ieee_computer_society



Computational Science in the Battle
Against COVID-19

Fernanda Foertter

BioTeam

Kelly Gaither

Texas Advanced Computing Center,

UT Austin

Konrad Hinsen

CNRS Orl�eans

John West

Texas Advanced Computing Center,

UT Austin

& IT IS WITH a sense of urgency that we present

this special issue of CiSE on the role of computing

in battling the COVID-19 pandemic. In early Janu-

ary 2020, scientists identified SARS-CoV-2 as the

cause of a cluster of pneumonia cases in Wuhan

City, Hubei, China. The first official death from

COVID-19 was reported by China on January 11,

and the first death outside of China was reported

on February 2nd. The numbers change every day,

but as of this writing 24M people worldwide have

been infected and over 800 000 of them have died.

As a near-universal scientific instrument,

computing is a versatile and effective tool in

many aspects of the pandemic response. In this

special issue, we have gathered a set of five

invited and peer-reviewed papers that we hope

will illuminate several of the ways in which com-

puting is playing an important role in response

to the devastation of COVID-19.

The first three papers provide a view of compu-

tational activities that are aimed at trying to better

understand how the virus works, research that

contributes to the search for vaccines, and more

effective pharmaceutical therapy. Perilla et al. dis-

cuss the use of molecular simulations to gain

insights into key tdeterminants of infection by

characterizing the mechanism by which envel-

oped viruses, such as SARS-CoV-2, infect cells. Li

et al. are also involved in the process of under-

standing infection, using computational simulation

to study the features of the interfaces of the so-

called spike protein of SARS-CoV-2, which is able

to bind to human Angiotensin-Converting Enzyme

2 (ACE2) initializing the entry to the host cell.

Amaro et al. step back from the details of specific

molecular simulations and examine the evolution

of the state of practice in biomolecular simulation

during the time of COVID-19. Disruptions in estab-

lished practices include broader adoption of pre-

print servers, more open sharing of methods,

models, and data, and streamlined processes for

accessing critical computing resources quickly.

The article discusses the interplay of all of these

factors and how they influence biomolecular simu-

lations in the fight against SARS-CoV-2.

Computing also plays a role in the design of

more effective near-term therapeutic interven-

tions for patients suffering from the worst effects

of the disease. Randles et al. describe an airflow

simulation developed to help address the need

to rapidly expand ventilator capacity for hospi-

talized patients by splitting ventilators between

two or more patients with differing respiratory

physiologies.
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Finally, computational models provide impor-

tant information to health officials and decision-

makers as they formulate and implement a pub-

lic policy response to the pandemic. Reinert et

al. address the development of a visual analytics

application for supporting pandemic prepared-

ness through a tightly coupled epidemiological

model and interactive interface.

This special issue also contains several

department contributions related to COVID-19.

The Visualization Corner in this issue highlights

several of the many different visualizations that

have played a role in understanding the science

and policy surrounding the pandemic. In part one

of a two-article series, the Leadership Computing

department describes some of the projects that

are taking advantage of the largest supercomput-

ing systems in the U.S. computing infrastructure.

The Diversity and Inclusion department takes a

look at how the pandemic has had a dispropor-

tionate impact on members of groups tradition-

ally underrepresented in computing. Finally, in

the Education department, the authors explore

the impact of the global pandemic on the online

course “Problem Solving Using Computational

Thinking,” with a particular focus on the topics

learners chose for their final projects.

Given the urgency of addressing the pan-

demic and the role of publications in disseminat-

ing knowledge, we felt it was especially

important to get this issue out in the same year

the pandemic started. Of course, that meant a

tremendous effort from authors and reviewers

to write and review contributions in an incredi-

bly compressed timeline while the pandemic

was still ongoing. We are very grateful for their

work. The authors are acknowledged by inclu-

sion of their work in this issue, but we want to

make a special gesture to recognize and thank

the reviewers for their all-too-often under-appre-

ciated contribution to the health of the academic

community: Peter J. Bond (Agency for Science,

Technology and Research, A�STAR), Min Chen

(Oxford University), Marco De Vivo (Italian Insti-

tute of Technology), David Emerson (Daresbury

Laboratory, U.K. Science and Technology Facili-

ties Council), Thomas Ertl (Universit€at Stutt-

gart), Sergei Grudinin (Inria), Michael Hagan

(Brandeis University), Yi He (University of New

Mexico), Chris North (Virginia Tech), Abhishek

Singharoy (Arizona State University), Tamar

Schlick (New York University), Luba Tchertanov

(�Ecole normale sup�erieure Paris-Saclay), Shaolei

Teng (Howard University), Zhicheng Wang

(Brown University), Gerhard Wellein (Friedrich-

Alexander-Universit€at Erlangen-N€urnberg), and

Shan Zhao (University of Alabama).
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Abstract—Enveloped viruses, such as SARS-CoV-2, infect cells via fusion of their envelope

with the host membrane. By employingmolecular simulations to characterize viral

envelopes, researchers can gain insights into key determinants of infection. Here, the

Frontera supercomputer is leveraged for large-scale modeling and analysis of authentic

viral envelopes, whose lipid compositions are complex and realistic. Visual Molecular

Dynamics (VMD) with support for MPI is employed, overcoming previous computational

limitations and enabling investigation into virus biology at an unprecedented scale. The

techniques applied here to an authentic HIV-1 envelope at two levels of spatial resolution

(29million particles and 280million atoms) are broadly applicable to the study of other

viruses. The authors are actively employing these techniques to develop and characterize

an authentic SARS-CoV-2 envelope. A general framework for carrying out scalable

analysis of simulation trajectories on Frontera is presented, expanding the utility of the

machine in humanity’s ongoing fight against infectious diseases.

& VIRUSES ARE PATHOGENS that cause infectious

diseases in living organisms. Because of their

lack of metabolic capabilities, viruses require
the molecular machinery of a host cell to repli-
cate. Virus particles, referred to as virions,
exhibit chemical and structural diversity across
families. The detailed architecture of a virus
determines its fitness, mechanism of infection
and replication, and host cell tropism.
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The most basic virions consist of genomic

material protected by a protein shell, called a cap-

sid. The viral genome contains the blueprint for

synthesis of the macromolecular components

that will form progeny virions. Depending on the

virus, the genome may be encoded as RNA or as

DNA. More complex virus structures exhibit an

exterior membrane, called an envelope, com-

posed of a lipid bilayer. Fusion of the viral enve-

lope with the membrane of the host cell initiates

infection. Enveloped viruses typically incorporate

surface glycoproteins that interact with host cell

receptors tomediate adhesion and facilitatemem-

brane fusion. The composition of the viral enve-

lope, along with the specificity of the adhesion

proteins, contributes to the recognition, attach-

ment, and fusion of the pathogen with its host.

Other membrane-embedded structures that may

bedisplayed by a virion include viral ion channels,

called viroporins, proteins that provide particle

scaffolding or assembly support, or proteins that

participate in the release of progeny virions.

Enveloped viruses, such as influenza A,

Ebola, and HIV-1, account for numerous cases of

infection and death in humans each year. SARS-

CoV-2, the novel coronavirus that causes COVID-

19, is also enveloped. The SARS-CoV-2 virion

incorporates a class-I fusion glycoprotein called

the spike (S), a purported viroporin known as

the envelope (E) protein, and a structurally

essential integral membrane (M) protein. While

each of these components plays a key role in the

viral life cycle, it is ultimately the envelope that

enables each to carry out its function success-

fully. As the envelope is derived from the host

cell membrane, particularly from the plasma

membrane or organelle in which the virion

assembles, its lipid composition may be highly

complex. Furthermore, the envelope may be

asymmetric, or present different lipid composi-

tions across the inner versus outer leaflets of the

bilayer; membrane asymmetry is crucial to the

function of most organelles and may likewise be

important in the assembly or infection processes

of viruses.

Detailed characterization of viruses is critical

to the development of new antiviral therapies.

Computational studies now routinely contribute

to the foundation of basic science that drives

innovation in pharmacy, medicine, and the

management of public health. Notably, molecular

dynamics (MD) simulations have emerged as a

powerful tool to investigate viruses. Following

advances in high-performance computing, MD

simulations can now be applied to elucidate

chemical–physical properties of large, biologi-

cally relevant virus structures, revealing insights

into their mechanisms of infection and replica-

tion that are inaccessible to experiments. In

recent years, MD simulations of intact enveloped

virions, including influenza A, dengue, and an

immature HIV-1 particle, have been reported.1–3

State-of-the-art lipidomics profiling of viruses has

enabled some of thesemodels to contain realistic

lipid compositions, leading to the first computa-

tional studies of authentic viral envelopes.1

Here, next-generation modeling and analysis

of authentic viral envelopes is discussed,

leveraging the resources of the leadership-class

Frontera supercomputer.4 A framework for

deploying large-scale analysis of MD simulation

trajectories on Frontera is presented. The model

system used for demonstration is an authentic

HIV-1 envelope, measuring 150 nm in diameter,

investigated at two levels of spatial resolution

(29 million particles and 280 million atoms). The

techniques applied here are broadly applicable

to the study of other viruses, including SARS-

CoV-2. The authors are actively employing simi-

lar techniques on Frontera to develop and char-

acterize an authentic SARS-CoV-2 envelope,

which will serve as the foundation for a complete

model virion. Given that the described HIV-1

envelope represents an upper size limit for

experimentally observed SARS-CoV-2 envelope

diameters (75–120 nm), users can expect similar

computational requirements and performance

outcomes for investigations of SARS-CoV-2 viri-

ons on Frontera.

COMPUTATIONAL CHALLENGES
MD simulations of membranes can be carried

out at coarse grained (CG) or atomistic levels

of detail. CG models employ particles that con-

solidate groups of atoms. Atomistic models

employ discrete particles for each constituent

atom, including hydrogen. Due to the size and

chemical complexity of authentic viral enve-

lopes, MD simulations can include millions—

Computational Science in the Battle Against COVID-19
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even hundreds of millions—of particles, particu-

larly when the physiological solvent environ-

ment of the system is taken into account.

Moreover, MD simulations of membranes must

be performed on timescales of hundreds of

nanoseconds to microseconds in order to char-

acterize dynamical properties, such as lipid lat-

eral diffusion and flip-flop between leaflets of the

bilayer.

CG models reduce computational expense by

eliminating degrees of freedom, enabling the

exploration of extended simulation timescales;

however, the loss of detail versus atomistic mod-

els reduces simulation accuracy. An approach

that combines the strengths of both methods

involves building and simulating a CG model,

which reproduces essential features of the mem-

brane and allows equilibration of lipid species,

then backmapping the CG representation to an

atomistic model for further study.5 The back-

mapping process can be precarious and

depends on the molecular mechanics force field

and energy minimization scheme to resolve

structural artifacts. An alternative approach is

the use of all-atom MD simulations to train or cal-

ibrate CG conformational dynamics, thereby

refining parameterization of the CG membrane

model to enhance accuracy. Either way, the

incredible number of particle–particle interac-

tions that must be computed to reproduce the

behavior of a membrane bilayer over extended

simulation timescales, especially for complex,

large-scale systems like viral envelopes, presents

a significant computational challenge at CG or

atomistic resolution.

Furthermore, the amount of data generated by

MD simulations of intact viral envelopes is tre-

mendous, both in terms of chemical intricacy and

storage footprint. MD simulation trajectories,

which may range from tens to hundreds of tera-

bytes in size, fail to provide new information

about viruses until they are analyzed in painstak-

ing detail. The magnitude of trajectory files and

the sheer numbers of particles that must be

tracked during analyses necessitates massively

parallel computational solutions. It follows that

such large datasets cannot be feasibly transferred

to other locations for analysis or visualization,

and interaction with the data to yield scientific

discoveries must be conducted on the same high-

performance computing resource used to run the

simulation in the first place.

COMPUTATIONAL SOLUTIONS
ON FRONTERA

Frontera is a leadership-class petascale super-

computer, fundedby theNational Science Founda-

tion and housed at the Texas Advanced

Computing Center at the University of Texas at

Austin.4 As of June 2020, it is ranked as the eighth

most powerful supercomputer in the world, and

the fastest on any university campus. Frontera

provides an invaluable computational resource

for furthering basic science research of large bio-

logical systems, including enveloped viruses.

Frontera comprises multiple computing sub-

systems. The primary partition is CPU-only and

consists of 8008 compute nodes powered by Intel

Xeon Platinum 8280 (CLX) processors; each node

provides 56 cores (28 cores per socket) and

192 GB of RAM. The large memory partition

includes 16 additional compute nodes with 112

cores (28 cores per socket) and memory

upgraded to 2.1 TB NVDIMM. Another partition is

a hybrid CPU/GPU architecture, consisting of 90

compute nodes powered by Intel Xeon E5-2620 v4

processors and NVIDIA Quadro RTX 5000 GPUs;

each node provides 16 cores (8 cores per socket),

four GPUs, and 128 GB of RAM. All Frontera nodes

contain 240 GB SSDs and are interconnected with

Mellanox HDR InfiniBand. The Longhorn subsys-

tem consists of 96 hybrid CPU/GPU compute

nodes powered by IBM POWER9 processors and

NVIDIA Tesla V100 GPUs; each node provides 40

cores (20 cores per socket), four GPUs, 256 GB of

RAM, and 900 GB of local storage. Eight additional

nodes have RAM upgraded to 512 GB to support

memory-intensive calculations. Longhorn is

interconnected withMellanox EDR InfiniBand.

Frontera has a multitier file system and pro-

vides 60 PB of Lustre-based storage shared across

nodes. The ability to store massive amounts of

data and analyze this data in parallel enables the

investigation of biological systems at an unprece-

dented scale. Researchers gain access, not only

to the computational capability to perform MD

simulations of millions of particles, but also to the

capability to extract more complex and compre-

hensive information from their simulation

November/December 2020 13



trajectories, leading to deeper discoveries rele-

vant to the advancement of human health.

Frontera’s Lustre filesystem is crucial for the

performance of large-scale biomolecular analy-

sis. Lustre decomposes storage resources

among a large number of so-called object store

targets (OSTs) that are themselves composed of

high-performance RAID arrays. In much the

same way that a RAID-0 array can stripe a file

over multiple disks, Lustre can similarly stripe

files over multiple OSTs. This second level of

striping over OSTs is particularly advantageous

when working with very large files, since I/O

operations at different file offsets can be ser-

viced in parallel by multiple independent OSTs,

according to the stripe count and stripe size set

by the user, or by system defaults. Figure 1A

illustrates how an MD simulation trajectory (and

even individual frames) can be striped over

OSTs. Figure 1B demonstrates the scalability of

multimillion particle biomolecular analysis on

Frontera when using the Lustre filesystem.

PARALLEL ANALYSIS WITH VMD
Visual molecular dynamics (VMD) is a widely

used software for biomolecular visualization and

analysis.6 Commonly utilized as a desktop appli-

cation to prepare MD simulations and interact

with trajectory data, VMD supports biomolecu-

lar systems of up to 2 billion particles, but mem-

ory capacity and the performance of I/O,

interactive graphics and visualization, and ana-

lytical computations determine its usability for

such large systems. VMD exploits multicore

CPUs, CPU vectorization, and GPU-accelerated

computing techniques to achieve high perfor-

mance for key molecular modeling and visualiza-

tion tasks. Interactive, exploratory visualizations

of large virus structures (several hundred mil-

lion particles) can be readily performed using

GPU-accelerated workstations with large mem-

ory capacities, but long-timescale analytical

tasks require even greater I/O and computing

resources. VMD can also be used in situ on mas-

sive parallel computers to perform large-scale

modeling tasks, exploiting computing and I/O

resources that are orders of magnitude greater

than those available on even the most powerful

desktop workstations. MPI implementations of

VMD have already been employed on petascale

supercomputers with Lustre filesystems to

enable novel investigation of large virus struc-

tures, such as the capsid of HIV-1.2

To facilitate large-scale molecular modeling

pipelines, VMD implements distributed memory

message passing withMPI, a built-in parallel work

scheduler with dynamic load balancing, and easy

to use scripting commands, enabling large-scale

Figure 1. Analysis of large-scale MD simulation

trajectories using Lustre filesystem A Illustration of

trajectory file striping using Lustre filesystem. Each

frame on the file is striped across multiple OSTs,

where the number of stripes are spawned according

to the stripe count and stripe size of the storage file.

Upon submission of the job, the compute nodes

access a series of frames, from the OSTs, to perform

the analysis of the trajectory using parallel I/O.

Instructions from the Tcl scripting interface involving

reading and writing files are requested through the

metadata server (MS), fetching the layout extended

attributes and using this information to perform I/O on

the file. BWall-clock time for the transverse diffusion

analysis of authentic viral envelopes on Frontera,

using a stripe count of 16 with different stripe sizes.

Computational Science in the Battle Against COVID-19
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parallel execution of molecular visualization and

analysis of MD simulation trajectories. VMD’s Tcl

and Python scripting interfaces provide a user-

friendly mechanism to distribute and schedule

user-defined work across MPI ranks, to synchro-

nize workers, and to gather results. This

approach allows user-written modeling and anal-

ysis scripts to be readily adapted from existing

scripts and protocols that have been developed

previously on local computing resources, allow-

ing robust tools to be deployed on a large-scale,

often with few changes.

VMD exploits node-level hardware-optimized

CPU and GPU kernels, all of which are also used

when running on distributed memory parallel

computers. Computationally demanding VMD

commands are executed by the fastest available

hardware-optimized code path, with fall-back to

a general purpose C++ implementation. When

run in parallel, the I/O operations of each VMD

MPI rank are independent of each other, allowing

I/O intensive trajectory analysis tasks to natu-

rally exploit parallel filesystems.

VMD supports I/O-efficient MD simulation tra-

jectory formats that have been specifically

designed for so-called burst buffers and flash-

based high-performance storage tiers, with emerg-

ing GPU-Direct Storage interfaces achieving I/O

rates of up to 70 GB/s on a single GPU-dense DGX-2

compute node, and conventional parallel I/O rates

approaching 1 TB/s. VMD startup scripts can be

customized to run one or multiple MPI ranks per

node, while avoiding undesirable GPU sharing

conflicts, allowing compute, memory, and I/O

resources to be apportioned among MPI ranks,

and thereby best-utilized for the task at hand.

To facilitate large-scale simulation and analysis

of biological systems containing millions of par-

ticles, VMD has been compiled on Frontera with

MPI enabled. Frontera’s capacity for massively

parallel investigation of intact, authentic viral

envelopes is demonstrated by application to enve-

lopemodels at two levels of spatial resolution.

MODELING AUTHENTIC VIRAL
ENVELOPES

CG Model of HIV-1 Envelope

Lipidomics profiling by mass spectrometry

has established the lipid composition of the

HIV-1 viral envelope.7 Based on this experimental

data, a CG model of an authentic HIV-1 envelope

was constructed (see Figure 2A). The model

exhibits a highly complex chemical makeup, with

24 different lipid species and asymmetry across

the inner and outer leaflets of the membrane

bilayer. The envelope is 150 nm in diameter and,

with solvent, comprises 29 million CG beads, rep-

resented as MARTINI8 particles. The CG model

was equilibrated using GROMACS 2018.1,9 and its

dynamics were investigated over a production

simulation time of over five microseconds. The

MD simulation system, complete with solvent

environment, is shown in Figure 2B.

Atomistic Model of HIV-1 Envelope

All-atom MD simulations are the most accu-

rate classical mechanical approach that can be

applied to study large-scale biological systems.

Following simulation of the CG HIV-1 envelope

model, which facilitated equilibration of lipid

distributions over an extended simulation time-

scale, an atomistic model was constructed based

on backmapping. The equilibrated CG model was

mapped to an atomistic representation using the

Backward tool,5 which enables transformation of

CG systems built with MARTINI. The approach

utilizes a series of mapping files that contain

structural information and geometric restric-

tions relevant to the modeling of each lipid spe-

cies. Local geometries of atomistic lipids are

reconstructed, taking into account stoichiome-

try and stereochemistry, to project the CG con-

figuration into an atomistic configuration. An

example of an atomistic representation of a lipid,

along with its chemical structure, is given in

Figure 2C. The final atomistic model of an

authentic HIV-1 viral envelope comprises over

280 million atoms including solvent and ions. To

complete the backmapping process, the system

must be relaxed to a local energy minimum to

resolve structural artifacts introduced by the CG

to all-atom transformation.

VIRAL ENVELOPE ANALYSIS ON
FRONTERA

Measuring Transverse Lipid Diffusion

Transverse diffusion of lipids occurs when

they flip-flop between leaflets of the membrane
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bilayer. Cellular enzymes can catalyze this move-

ment of lipids, or it can occur spontaneously

over longer timescales. Computational appro-

aches to characterize transverse diffusion in het-

erogeneous lipid mixtures have been described

previously and indicate that flip-flop occurs at

relatively slow rates. Current strategies to mea-

sure flip-flop events are based on tracking the

translocation and reorientation of lipid head-

groups (i.e., colored beads in Figure 2A).

A feature released in VMD 1.9.4 by the

authors (measure volinterior)10 facilitates track-

ing of headgroup dynamics by providing rapid

classification of their locations in the inner ver-

sus outer leaflets of the bilayer. The method

equips VMD with a mechanism to identify the

inside versus outside of a biomolecular con-

tainer. If the container surface is specified as the

region of the bilayer composed of lipid tail

groups (i.e., silver in Figure 2A), VMD can detect

the presence of lipid headgroups in the endo-

plasmic versus exoplasmic leaflets. By tracking

the number of headgroups that flip-flop from

one leaflet to the other during intervals of simu-

lation time, rates of transverse diffusion can be

readily calculated.10

Frontera was leveraged to measure trans-

verse lipid diffusion in the CG model of the

authentic HIV-1 viral envelope using measure

volinterior in VMD compiled with MPI support.

The entire 5.2 ms of MD simulation, comprising

5200 frames with a storage footprint of 170 GB,

was used for the calculation. To obtain high I/O

performance, the trajectory files were set to a

1 MB stripe width, striping over 16 Lustre OSTs.

The analysis was run on Frontera’s primary

compute partition, utilizing 56 Intel CLX cores

per node.

Flip-flop events for the lipid N-stearoyl-

D-erythro-sphingosylphosphorylcholine (DPSM,

Figure 2C) were found to occur at a rate of 2:62�
10�4 � 1:49� 10�5 molecules per nanosecond

from the outer to inner leaflet, and 2:33� 10�5 �
1:41� 10�6 molecules per nanosecond from the

inner to outer leaflet (see Figure 3A). Because

inward versus outward diffusion of this lipid spe-

cies is not occurring at the same rate, the calcu-

lation reveals the process of lipid distributions

being equilibrated across the asymmetric

bilayer over the course of the simulation. The

Figure 2. Authentic model of HIV-1 viral envelope

A Cross-section of CG envelope model. Inset

shows details of the inner (endoplasmic) and outer

(exoplasmic) leaflets of the membrane bilayer.

Envelope is 150 nm in diameter and comprises 29

million MARTINI particles. B CG envelope model

suspended in physiological solvent environment,

used for long-timescale MD simulations.

C Chemical structure and atomistic representation

of DPSM, one of 24 lipid species included in the

HIV-1 envelope model. Each CG lipid in the

envelope was backmapped to an atomistic

version exhibiting full chemical detail.

Visualizations of the virus structures were

produced using VMD.6

Computational Science in the Battle Against COVID-19
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Tcl framework for performing the calculation

with VMD, the VMD startup script, and the

SLURM job submission script used to run the cal-

culation on Frontera are given in the Supplemen-

tary Information.

Figure 3B shows the wall-clock time for the

transverse diffusion calculation with one VMD

MPI rank per node and two VMD MPI ranks per

node. By running multiple VMD MPI ranks per

node, I/O operations are more effectively over-

lapped with computations, thereby achieving

better overall I/O and compute throughout, both

per node and in the aggregate, leading to an

overall performance gain. It is worth noting,

however, that finite per node memory, GPU, and

interconnect resources ultimately restrict the

benefit of using multiple MPI ranks per node to

achieve better compute-I/O overlap. Ongoing

VMD developments aim to improve compute-I/O

overlap both for CPUs and for GPU-accelerated

molecular modeling tasks through increased

internal multithreading of trajectory I/O to allow

greater asynchrony and decoupling of I/O from

internal VMD computational kernels.

Iterative Relaxation of an Atomistic Envelope

The atomistic model of an authentic HIV-1

viral envelope presented here was derived via

backmapping from a CG model. A major limita-

tion of the backmapping approach involves

structural artifacts introduced by the CG to all-

atom transformation. Figure 4A shows an exam-

ple of such structural artifacts in the lipid DPSM,

including distorted bond lengths and angles.

The current strategy for remedying these arti-

facts is to subject the backmapped model to

molecular mechanics energy minimization,

relaxing the geometry of each molecule, and the

system as a whole, to a local energy minimum.

Figure 4B shows an example of a postminimiza-

tion structure in which the distortions have

been successfully resolved.

Energy minimization is a common procedure

applied to biomolecular systems to eliminate

close contacts and nonideal geometries prior to

the start of MD simulations. The energy of atomis-

tic systems is described as an empirical potential

energy function V(ri), where the terms depend

on the positions r of i atoms. Here, energyminimi-

zation of the system is performed on Frontera

using NAMD 2.14, an MD engine based on C++ and

charmm++ that is amenable to large systems by

virtue of being highly scalable onmassive parallel

computers.11 Energy minimization is imple-

mented in NAMD using the conjugate gradient

algorithm for maximum performance. The atom-

istic model of an authentic HIV-1 viral envelope

was subjected to energy minimization based on

the CHARMM36 force field, with all the latest cor-

rections in parameters for lipids and heteroge-

nous protein-lipid systems.12

Figure 4C diagrams the complete procedure

for constructing an atomistic envelope model

from an initial CG model. Following backmapping

of the CG representation to an all-atom represen-

tation, ions must be added to achieve electro-

static neutralization of the system, given the

numerous charged lipid headgroups present in

the envelope. Bulk ions are incorporated into

Figure 3. Parallel analysis of authentic viral

envelopes. A Transverse diffusion analysis of the

lipid DPSM in the CG model of the viral envelope.

BWall-clock time for calculation of transverse

diffusion on Frontera.
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the explicit solvent, also backmapped from the

CG model, to reproduce a realistic physiological

environment. Coordinate and topology files are

generated using the js plugin in VMD, utilizing

a binary file format that overcomes the fixed-

column limitation of pdb files. The minimization

of multimillion atom systems can occasionally

cause memory overflow or significant loss of per-

formance in NAMD, due to the I/O, even on large-

scale computational resources. In remedy, the

memory-optimized version of NAMD implements

parallel I/O and a compressed topology file,

reducing the memory requirements for large bio-

molecular systems.

Following initial conjugate gradient minimiza-

tion with NAMD, the model is assessed for major

contributors to energetic instability, including

structural clashes, close contacts, bond lengths,

or angles significantly exceeding equilibrium val-

ues, and unfavorable dihedral configurations.

Such assessments can be rapidly accomplished

using VMD compiled with MPI support on Fron-

tera, using existing VMD commands like measure

contacts, measure bond, measure angle, and mea-

sure dihed. In a second iteration of minimization,

regions of the system that are relatively stable

are restrained in order to focus further minimiza-

tion efforts on regions that remain the most ener-

getically unfavorable. Useful NAMD commands

forminimization of unstable systems includemin-

TinyStep and minBabyStep, which control the

magnitude of steps for the line minimizer algo-

rithm for initial and further steps of minimization,

respectively. This process is repeated until all

geometric distortions are resolved, and the atom-

isticmodel has been driven to a local energymini-

mum, representative of the stable biological

system at equilibrium.

CONCLUSIONS
Increased computational capability presents

the opportunity for researchers to push the

boundaries of scientific knowledge. Building, sim-

ulating, and analyzing models of intact, authentic

viral envelopes, particularly at atomistic detail, is

a relatively new research endeavor under active

development. The leadership-class Frontera sup-

ercomputer provides a powerful resource to sup-

port the continuing growth of this field. The

Figure 4. Resolving distortions in backmapped

lipids. A Atomistic representation of DPSM with

structural artifacts post-backmapping. CG

representation of the lipid is superimposed to the all-

atom structure. B Atomistic representation of DPSM

post-minimization with structural artifacts resolved.

CG representation of the lipid is superimposed to the

relaxed all-atom structure. C Iterative relaxation

process for large-scale authentic atomistic viral

envelopes. Following backmapping from CG

representations to all-atom, the system is subjected

to charge neutralization, followed by generation of

topology and coordinate files. Conjugate gradient

minimization using NAMD, in combination with

parallel analysis using VMD MPI, is employed

iteratively to eliminate structural artifacts of the

membrane and drive the system to a local minimum.
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combination of Frontera’s state-of-the-art, mas-

sively parallel architecture and high-performance

parallel software applications, such as VMD, will

enable researchers to make discoveries relevant

to the treatment and prevention of disease at an

unprecedented scale. All of the techniques dis-

cussed here are applicable to the study of other

enveloped viruses, including SARS-CoV-2, which

likewise comprises a complex lipidome. Notably,

lipid compositions for viral envelopes can vary

significantly depending on cell line and virus

strain, and investigation of the effects of varying

lipidomes on virus integrity and infectivity repre-

sents an interesting point of future research. Like-

wise, investigation of the interplay of viral

envelopes with their embedded membrane pro-

teins, as well as the viral-host membrane fusion

process incorporating the complexity of both

virus and cell lipidomes will become accessible

as the field continues to mature. Owing to resour-

ces like Frontera, the computational biological

sciences will play an increasingly important role

in driving future innovations that improve human

health and longevity.
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of SARS-CoV-2 Spike
Protein Binding With
ACE2
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Abstract—A large population in the world has been infected by COVID-19. Understanding

themechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is

important for the management and treatment of COVID-19. When it comes to the infection

process, one of the most important proteins in SARS-CoV-2 is the spike (S) protein, which

is able to bind to human Angiotensin-Converting Enzyme 2 (ACE2) and initializes the entry

of the host cell. In this study, we implementedmultiscale computational approaches to

study the electrostatic features of the interfaces of the SARS-CoV-2 S protein receptor

binding domain and ACE2. The simulations and analyses were performed on high-

performance computing resources in the Texas Advanced Computing Center. Our study

identified key residues on SARS-CoV-2, which can be used as targets for future drug

design. The results shed light on future drug design and therapeutic targets for COVID-19.

& THE NUMBER OF confirmed cases of Coronavi-

rus Disease 2019 (COVID-19) is increasing dramati-

cally1 due to the fast spread of SARS-CoV-2. The

large coronavirus family includes hundreds of

viruses that usually do not pose a threat to human

health. SARS-CoV-2 is the seventh member of

those coronaviruses that infect the human body.

Of these, four (HCoV-229E, HCoV-OC43, HCoV-

NL63, HKU1)2 cause mild to moderate symptoms,

while the other three can cause serious, even fatal

diseases. SARS coronavirus (SARS-CoV) broke

out in 2002 and caused Severe Acute Respiratory

Syndrome (SARS). MERS coronavirus (MERS-CoV)
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found in 2012 causedMiddle East Respiratory Syn-

drome (MERS), which continues to cause sporadic

and localized outbreaks. The animal-to-human

and human-to-human transmissions of these two

fatal viruses caused the outbreak of the 2003 SARS

pandemic and the following 2012 MERS pandemic,

which resulted in over 8000 and 2400 reported

cases, and killed 774 and 858 people, respectively.

SARS-CoV-2 is the third known death-leading coro-

navirus that appeared in 2019, has caused a global

pandemic, and compared to SARS and MERS,

COVID-19 spreads much faster and infects a larger

population globally. Many studies have been

made on SARS-CoV-2 to develop COVID-19 diag-

nostics, therapeutics, and vaccines. Meanwhile, a

great number of fundamental studies have also

been focused on revealing the mechanisms of

SARS-CoV-2 and other coronaviruses to deeply

understand them and assist the treatment and

drug design for COVID-19.

Coronaviridae is a family of enveloped, posi-

tive-sense, single-stranded RNA viruses that

infects a wide range of hosts, including amphib-

ians, birds, and mammals.3 The spherical viruses

are typically decorated with spike (S) proteins,

making the whole virus the shape of solar

corona. The structure of a coronavirus mainly

contains several types of proteins, including: the

nucleocapsid (N) proteins which are inside the

envelope of the coronavirus, the membrane (M)

proteins and the envelope (E) proteins which

form the virus envelope, and the spike (S) pro-

teins which are trimmers on the envelope of the

virus. The spike (S) proteins initialize an infec-

tion by binding to the human Angiotensin-Con-

verting Enzyme 2 (ACE2). Then, SARS-CoV-2

enters the host cell and reproduces more

viruses, which are released later to infect more

cells (see Figure 1). Inhibiting the interactions

between S proteins and ACE2 can block the

infections, which is a direction for therapeutic

drug design. Therefore, many of studies have

been focused on the interactions of coro-

naviruses’ S proteins and human ACE2.

Computational approaches are successfully

used to study protein–protein interactions.4–6 Such

approaches can also be used to study the protein–

protein interactions of viruses. Computations of

viruses are challenging due to the complexity of

the viruses. Two categories of computational

approaches have been implemented to study the

viruses: atomic simulations, which study a whole

Figure 1. Process of SARS-CoV-2 infecting host

cells. (A) SARS-CoV-2 S protein binds to ACE2 of

host cell, and enters the host cell after binding.

(B) SARS-CoV-2 utilizes the host cell as a factory to

reproduce more SARS-CoV-2 and release them to

infect more cells.

Figure 2. Structure of S protein homotrimer and

ACE2. Positive and negative residues on a monomer

of S protein are colored in blue and red, respectively.

(A) ACE2 is colored in gray. The S protein trimer

contains three identical monomers, colored in cyan,

green, and orange. One monomer (cyan)’s RBD flips

out to bind with the ACE2. The S protein is composed

by S1 and S2 subunits. (B) Single S protein monomer

structure. The orange circle shows the RBD and the

black circle marks the flexible hinge connecting RBD

and other part of the S protein.
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virus or part of a virus at the atomic level, and

coarse-grained simulations, which treat a virus at

the amino acid level. Some research efforts are

focused on determining the structures of viruses,

others reveal fundamentalmechanisms for viruses,

such as viral capsid assembly7 and viral capsid

electrostatic features.8 Due to the fast growth of

supercomputer performance and rapid develop-

ments of computational algorithms, computational

approaches play significant roles in virus studies.

This article studies the fundamental mecha-

nisms of SARS-CoV-2 S protein binding to ACE2.

Based on the structure of the SARS-CoV-2 S pro-

tein and ACE2 (see Figure 2), several computa-

tional approaches were utilized to perform

calculations and simulations. These approaches

can be widely utilized to study more viruses.

The electrostatic features were analyzed based

on the distribution of the charged residues. The

hydrogen bonds and salt bridges are studied

after molecular dynamic (MD)

simulations. Key residues, which

significantly contribute to binding

energy, are also identified in this

work. Previous studies demon-

strated that the interactions

between ACE2 and SARS-CoV-2 is

more temperature-sensitive than

ACE2 and SARS-CoV. The binding affinity of ACE2

and SARS-CoV-2 was also calculated.9 In this arti-

cle, more detailed binding mechanisms, such as

the key residues, salt bridges, and hydrogen

bonds are revealed. Such details provide more

specific information for future drug design. The

findings in this article will pave the way for other

research related to drug design and treatments

for COVID-19 and other coronavirus-caused

diseases.

METHODS

Structure Preparation

The genetic sequence of SARS-CoV-2 was

obtained from Genebank,10 which was from the

early patients in December 2019. The SARS-CoV-2

with the ACE2 complex structure was modeled by

the Swiss-Model web server (https://swissmodel.

expasy.org/) based on the template of the complex

structures of SARS-CoV and ACE2 (pdb ID: 6ACG,

https://www.rcsb.org/structure/6ACG). To study

their electrostatic interactions, we mainly focus

on the receptor binding domain (RBD) of the

S protein and the binding domain of ACE2.

Electrostatic Calculations Using DelPhi

In order to study the electrostatic features,

DelPhi11 was utilized to calculate the electrostatic

potential for the S protein RBD and ACE2 binding

domain. In the frameworkof continuumelectrostat-

ics, DelPhi calculates the electrostatic potential

f (in systems comprised of biological macro-

molecules and water in the presence of mobile

ions) by solving the Poisson–Boltzmann equa-

tion (PBE)

r � � rð Þrf rð Þ½ � ¼ �4pr rð Þ þ � rð Þk2 rð Þ sinh f rð Þ=kBTð Þ
(1)

where fðrÞ is the electrostatic potential, �ðrÞ is

the dielectric distribution, rðrÞ is the charge den-

sity based on the atomic structures, k is the

Debye–Huckel parameter, kB is the

Boltzmann constant, and T is the

temperature. Due to the irregular

shape of macromolecules, DelPhi

uses a finite difference method to

solve the PBE.

The electrostatic potential of the

SARS-CoV-2

S protein with ACE2 was calculated by DelPhi. The

calculated electrostatic potential on the surface

was visualized with Chimera (see Figure 3). In

order to visualize electric field lines between SARS-

CoV-2 and ACE2, the visual molecular dyna-

mics (VMD: https://www.ks.uiuc.edu/Research/

vmd/) software package (see Figure 3) was imple-

mented based on the electrostatic potential map

from DelPhi calculations. The color scale range

was set from –1.0 to 1.0 kT/A
�
.

MD Simulations SARS-CoV-2 RBDs

To simulate the dynamic interactions between

S proteins and ACE2 protein, 20-nsMD simulations

were carried out using NAMD on GPUs using Lone-

star5 at the Texas Advanced Computing Center

(TACC https://www.tacc.utexas.edu/). A 2000-step

minimization was performed for each simulation,

followed by a 51000-step simulation to relax the

complex structures to avoid the clashes at the

binding interface. During the MD simulations, the

This article studies the

fundamental

mechanisms of

SARS-CoV-2 S protein

binding to ACE2.
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temperature was set to be 300K, and the pressure

was set as standard using the Langevin dynamics.

For PME, which is set for full-system periodic elec-

trostatics, the grid size is (86, 88, 132) as x, y, and

z values, respectively. After the first 0.05 ns of the

simulation, atoms that were not involved in bind-

ing domains were constrained within a margin of

5.0 A
�
of their natural movement maximum length

value, since the binding forceswere strong enough

for proteins to bond completely after 51000 steps,

which is not suitable for finding salt bridges. In

order to get a more accurate result of the simula-

tion, data of the last 10 ns of simulations were

used for data analysis.

To analyze the binding interaction between

S protein and ACE2 by finding the key residues,

the salt bridges that were formed within the dis-

tance of 4 A
�
were extracted from the last 2000

frames of simulations, and for hydrogen bonds,

the cutoff was 3.2 A
�
. The several top-strongest

salt bridges in each binding domain were

determined by calculating their formation fre-

quency (occupancy in Figure 4) during MD simu-

lation. The simulation is shown in Movie 1.

Binding Energy Calculations Using MM/PBSA

For the binding energy calculations of the

S protein and ACE2, the widely used MM/PBSA

method was involved in calculating the average

binding energy from the last 2000 frames, which

were the frames of the last 10 ns trajectory of

the MD simulation (see Tables 1 and 2).

Figure 3. Electrostatic surface and electric field lines

of SARS-CoV-2 S protein and ACE2 binding domain.

(A) Electrostatic surface of S protein and ACE2. (B)

Binding interface of ACE2. (C) Binding interface of

S protein RBD. (D) Electric field lines of S protein RBD

and ACE2 binding domain. (E) A closeup of electric

field lines at the binding interfaces. The residues

forming salt bridges are highlighted.

Figure 4. H-bonds between SARS-CoV-2 RBD and

ACE2 binding domain. (A) Numbers of H-bonds at

different time stamps from 10 to 20 ns, the average

value is marked as red line with the value of 11.30.

(B) Occupancy of H-bonds ordered by decreasing

values of occupancy, and the residues are labeled in

y-axis with the SARS-Cov-2 in the left and ACE2 in

the right. (C) List of hydrogen bonds that are ranked

by their electrostatic energy values.
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In the MM/PBSA calculation method, DGbind is

calculated as

DGbind ¼ Gcomplex �Gvirus�bd �GACE2 (2)

where Gcomplex is the total energy of complex of

S protein and ACE2 pair; Gvirus�bd and GACE2 are

the total energies of the two individual proteins,

and virus-bd stands for the binding domain of

SARS-CoV-2 to ACE2. The total energy is calcu-

lated as

Gtotal ¼ Gcoul þGpolar þGvdw þGnonpolar (3)

where Gcoul is the Coulombic energy, Gpolar is the

polar part of the solvation energy, Gvdw is the

Van der Waals energy, and Gnonpolar is the nonpo-

lar part of the solvation energy. The Coulombic

and polar electrostatic energies were calculated

by DelPhi. The Van der Waals binding energy

was calculated using NAMD. The nonpolar term

of solvation energy was calculated via the sol-

vent accessible surface area method

Gnonpolar ¼ gSAþ b (4)

where g ¼ 0.0054 kcal �mol�1 �A�2 , b ¼ 0.92

kcal �mol�1 �A�2,12 and SA denotes the solvent

accessible surface area, which is calculated

using the Naccess2.1.1 program (http://www.

bioinf.manchester.ac.uk/naccess/).

RESULTS AND DISCUSSIONS
The structure of SARS-CoV-2 S protein bind-

ing with human ACE2 is shown in Figure 2. The

S protein is a homotrimer that contains three

identical monomers, as shown in cyan, orange,

and green. ACE2 is shown in gray. The main

function of the S1 subunit is to bind its RBD with

ACE2, while the S2 subunit mainly focuses on

the cell membranes’ fusion between the virus

and host cell. The structure shows that the RBD

from the S protein monomer (cyan) flips out and

binds with the ACE2, while the other two mono-

mers’ RBDs are hidden in the S1 subunit. This

configuration change of RBD is essential for the

S protein binding to ACE2. The hinge structure

responsible for the configuration change is

shown in the black circle in Figure 2(B).

The electrostatic features are important for

the protein–protein binding process. Therefore,

we indicated the positive and negative residues

in blue and red, respectively, on one of the S pro-

tein monomers [see Figure 2(A) and (B)]. Most of

the charged residues are distributed on the sur-

face of the S protein. At the binding interface of

the RBD, the dominant charge is positive, which

Table 1. Binding Energy of SARS-CoV-2 S Protein RBDs

Binding With ACE2 Binding Domain. SD Stands for

Standard Deviation.

Energy terms
Magnitude
(kcal/mol)

Mean SD

Polar solvation energy 630.18 11.7
Nonpolar solvation energy –18.41 0.41
Van der Waals energy –128.53 8.43
Coulombic energy –656.69 16.04

Electrostatic energy –26.51 10.48

Table 2. Binding Energy of Individual Hydrogen Bonds Between SARS-

CoV-2 S Protein RBD and ACE2 Binding Domain, With the Decreasing

Order of the Electrostatic Energy Mean Values.

H-Bonds
Electrostatic

energy (kcal/mol)
Hydrogen bonds

Occupancy

Mean ��SD (%)
�LYS417-ASP30 –6.97 1.57 39.64
�GLU484-LYS31 –5.13 1.53 55.12
�LYS444-GLU56 –5.02 1.67 45.7
�ARG403-GLU37 –2.21 2.4 13.09
TYR473-ASP30 –2.14 2.28 44.83
THR500-ASP355 –2.07 1.52 67.46
TYR495-GLU37 –2.07 1.65 46.5
ASN487-TYR83 –2.04 1.57 50.22
TYR453-HSD34 –1.53 1.29 41.73
TYR449-ASN64 –1.04 1.38 27.52
PHE490-LYS31 –0.67 1.12 40.08
TYR505-ALA386 –0.6 1.45 21.08
THR478-GLN24 –0.39 1.46 13.86
GLN506-GLN325 –0.37 0.87 22.8
SER477-GLN24 –0.36 2.13 35.29
GLN498-ASP38 –0.35 0.94 43.96
TYR505-ALA387 –0.26 1.73 28.57
SER477-THR20 -0.25 1.12 19.51
ASN440-GLU329 –0.22 0.92 23.05
PHE486-GLN76 –0.13 0.75 40.43
GLY447-GLN42 –0.06 0.72 38.64
LYS444-GLN60 0.64 1.58 43.36
GLY446-GLU56 0.67 0.75 37.66
GLN493-GLU35 1.04 1.06 44.31

GLY496-ASP38 1.79 1.07 67.76

�Salt bridges at the binding interface.��SD stands for Standard Deviation.
For each pair of the hydrogen bond, residue ID on the left side is from
SARS-CoV-2 S protein RBD and the right side is from ACE2 binding
domain.
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provides attractive force to ACE2, as the net

charge of the ACE2 binding interface is negative.

Details are shown in electrostatic surfaces and

electric field lines in the following sections.

Electrostatic Surfaces

Electrostatic features are important for pro-

tein–protein interactions and drug design. We cal-

culated the electrostatic potential on the surface

of the SARS-CoV-2 S protein and ACE2. The

binding interface of ACE2 shows significant neg-

ative electrostatic potential, while the binding

interface of SARS-CoV-2 S protein RBD shows

dominantly positive potential (see Figure 3).

Therefore, the S protein RBD is attracted by the

ACE2 due to their opposite net charges at their

binding interfaces. Such electrostatic binding

force is common in other strong protein–pro-

tein interactions, which provides

long-range interactions.

To further illustrate the electro-

static interactions, electric field

lines between the SARS-CoV-2 S pro-

tein and ACE2 are calculated and

shown in Figures 3(D) and (E).

Dense electric field lines indicate

strong electrostatic forces. From

the electric field line distribution, it

is clear that there are four groups of

dense field lines between the

S protein RBD and ACE2. The sources of the four

groups of field lines are all charged residues,

which are labeled in Figure 3(E). Those residues

are further proved to be the salt-bridge residues

at the binding interfaces of S protein RBD and

ACE2, as shown in Figure 3(E).

Binding Energy

Since SARS-Cov-2 attracts hACE2 to bind, the

binding energy is one of the essential terms that

can show how much contribution each different

residue makes in the binding process. The bind-

ing energy of the SARS-CoV-2 S protein RBD and

ACE2 binding domain are calculated using the

MM/PBSA method. The results of the binding

energy are shown in Table 1. More detailed cal-

culations and analyses of salt bridges and hydro-

gen bonds are shown in Table 2. In Table 1, the

nonpolar solvation energy is the energy of

excluding the water molecules when the protein

complex immerses in water. The Van der Waals

energy decreases significantly when the S pro-

tein RBD is away from ACE2. The nonpolar solva-

tion energy and Van der Waals binding energy

are nonspecific to amino acids. These two

energy terms mainly depend on the binding sur-

face area. Normally, a larger binding surface

results in greater nonpolar solvation energy and

Van der Waals binding energy values. In this arti-

cle, we mainly focus on the long-range electro-

static binding energy, which is the sum of the

Coulombic energy and polar solvation energy.

These two energy terms strongly depend on the

distribution of amino acids, especially the

charged amino acids. For the SARS-CoV-2 S pro-

tein RBD and ACE2, the electrostatic binding

energy is –26.51 kcal/mol. To further examine

which residues significantly contribute to the

electrostatic binding energy, we

performed the analyses on

hydrogen bonds and salt bridges.

Hydrogen Bonds

The drug targets usually are

the residues that form hydrogen

bonds or salt bridges. Therefore,

studying hydrogen bonds and salt

bridges at the binding interfaces is

crucial for COVID19. Hydrogen

bonds and salt bridges at the inter-

faces of S protein and ACE2 are calculated based

on the MD simulations and are analyzed using the

VMDH-bond tool. The average number of H-bonds

is 11.30, shown as the red lines in Figure 4(A).

FromFigure 4(B), theH-bondswith over 10%occu-

pancy are presented with a decreasing order of

occupancy. Among the 25 pairs of hydrogen

bonds, four salt bridges are included and marked

with asterisks. The occupancy of each hydrogen

bond pair is shown in Table 2 and visualized in

Figure 4(B). The highest occupancy of the salt

bridge is 67.76%, from the S protein GLY469 and

ACE2 ASP38. Another hydrogen bonds’ list is

shown in Figure 4(C), which is ranked by the elec-

trostatic binding energy contributed by each pair

of hydrogen bond. The top four pairs are LYS417-

ASP30, GLU484-LYS31, LYS444-GLU56, ARG403-

GLU37 (for each pair, the residue id on the left

side is from the SARS-CoV-2 S protein and that on

the right side is from ACE2). By default, the VMD

Since SARS-Cov-2

attracts hACE2 to bind,

the binding energy is

one of the essential

terms that can show

how much contribution

each different residue

makes in the binding

process.
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Salt Bridge tool identifies a salt-bridge when the

distance between a positive residue and a nega-

tive residue is less than 4A
�
, no matter if these two

residues form hydrogen bond or not. It is notable

that the top four hydrogen bonds are also salt

bridges. We therefore can conclude that the S pro-

tein is attracted to ACE2, and there are a total of

25 residue pairs between the interfaces that con-

tribute significantly to the electrostatic binding

energy. The top four residue pairs are all salt

bridges. The average distance between each pair

of residues in these top salt bridges is calculated:

LYS417-ASP30, 2.5A
�
; GLU484-LYS31, 4.4A

�
; LYS444-

GLU56, 2.8A
�
; ARG403-GLU37, 2.6 A

�
. The sum of the

electrostatic binding energies of the four salt

bridges is –19.33 kcal/mol, which takes 73% of the

total electrostatic binding energy. Thus, the

salt-bridge involved residues are the most

important residues that can be considered as

future drug targets. The structures of the four

salt bridges at the interfaces are illustrated in

Figure 5.

CONCLUSION
COVID-19 infects a large population in the

world. This fatal disease is caused by SARS-

CoV-2, a novel coronavirus. Understanding the

mechanisms of SARS-CoV-2 is critically impor-

tant, not only for ongoing COVID-19 but also

for the upcoming challenges from other dis-

ease-causing coronaviruses in the future. A

deep understanding of the mechanisms of this

virus is critical to developing treatments and

vaccines for SARS-CoV-2, and to be better pre-

pared for potential future novel viruses.

Among the types of proteins in coronavi-

ruses, S protein plays a significant role of

attaching the virus to the host cell. Blocking

the interactions between S protein and human

ACE2 may result in effective therapeutic targets

for COVID-19. This study implemented several

computational approaches to study the funda-

mental mechanisms of COVID-19 S protein

binding with human ACE2. The electrostatic

features of COVID-19 S protein and ACE2 are

analyzed according to the charge distribution

on their structures. Hydrogen bonds and salt

bridges on the interfaces are studied based on

MD simulations. Residues involved in salt

bridges are identified as key residues that sta-

bilize the interactions of S protein and ACE2

complex structure. Blocking these key residues

may inhibits the function of S protein, thus pre-

venting the infection of SARS-CoV-2. This study

provides potential targets for the drug design

of COVID-19. The methods implemented in this

research can be widely used to study other

viruses.
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Biomolecular Simulations
in the Time of COVID-19,
and After

Rommie E. Amaro

UC San Diego

Adrian J. Mulholland

University of Bristol

Abstract—COVID-19 has changed life for people worldwide. Despite lockdowns globally,

computational research has pressed on, working remotely and collaborating virtually on

research questions in COVID-19 and the virus it is caused by, SARS-CoV-2. Molecular

simulations can help to characterize the function of viral and host proteins and have the

potential to contribute to the search for vaccines and treatments. Changes in themodus

operandi of research groups include broader adoption of the use of preprint servers,

earlier and more open sharing of methods, models, and data, the use of social media to

rapidly disseminate information, online seminars, and cloud-based virtual collaboration.

Research funders and computing providers worldwide recognized the need to provide

rapid and significant access to computational architectures. In this article, we discuss

how the interplay of all of these factors is influencing the impact—both potential and

realized—of biomolecular simulations in the fight against SARS-CoV-2.

& IN JANUARY 2020, few people could have

envisioned how drastically the world as we

knew it would be upended, and how quickly, due

to COVID-19. Unusual cases of viral pneumonia

were first identified in Wuhan, China, at the end

of 2019. The cause was determined to be a novel

coronavirus (SARS-CoV-2). The first cases subse-

quently appeared in the U.S. in late January

2020. By February, cases in Europe were spread-

ing concerningly, particularly in the Lombardy

region in Italy. Lockdowns were imposed in

many countries in response. By mid-March,

California went into lockdown, and the U.K. fol-

lowed suit a short time later. Halfway through

2020, lockdowns have happened all across the
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world. By July 1, the U.S. hit a milestone of 50 000

new confirmed COVID-19 cases in a single day. In

the first half of 2020 alone, over half a million

people have died from this pandemic disease

and it continues to spread globally.

Scientists the world over are working to meet

this challenge, in the face of added obstacles

posed by lockdowns. Research funders, compa-

nies, and other organizations are making impres-

sive efforts and commitments to share and

analyze scientific and biomedical data, which

have emerged rapidly in the face of the pan-

demic.� Computational researchers have to some

extent been less affected by lockdowns than their

experimental counterparts. Computational chem-

ists and biologists can run jobs remotely on high-

performance computers (HPCs), or in the cloud,

regardless of whether the scientist is in their

office at a university/institute or from their

kitchen table in their homes. Thus, many compu-

tational scientists in the fields of

biology, chemistry, medicine, and

allied fields realized the chance to

make potentially significant near-

and long-term impact. Numerous

groups pivoted their efforts to

address the COVID-19 challenge,

seizing on the opportunity to chal-

lenge their methods with activi-

ties related to the SARS-CoV-2

virus and the disease it causes,

and hoping to make a contribution to tackling it.

The range of activity is huge and we can mention

only a few examples here.

One area of science in which computation has

the potential for impact on COVID-19 research is

biomolecular simulation and computational bio-

physics. These fields use molecular models to

study the structures, interactions, and dynamics

of proteins and other biological macromolecules.

This includes atomically detailed simulations of

the components of the SARS-CoV-2 virus and its

interactions with host proteins and neutralizing

antibodies. Such simulations can help to reveal

how viral proteins function, to explore the

dynamics of its RNA genome and interactions

with protein components, as well as be used to

explore the effects of genetic variations (i.e.,

mutations that the virus adopts during spread).

Molecular simulations and related techniques

can also potentially contribute to the search for

drugs and vaccines. These computational experi-

ments rely on data generated from experimental

biological and chemical methods, in particular X-

ray crystallography and cryoelectron micros-

copy (cryoEM), which give highly detailed three-

dimensional structural data of the viral machin-

ery and RNA genome. Simulations can provide

atomically detailed insight—in particular on pro-

tein dynamics—not readily achievable by experi-

ment alone. A so-called force field describes the

interactions between the atoms in the system,

which may number several million and contain

either protein, RNA, DNA, lipids, or a combination

of these. The derivative of this interaction poten-

tial defines the forces on the atoms, which are

numerically encoded and predict their motion,

determined by integrating Newton’s equation of

motion over time. The integration is

performed billions or trillions of

times at short (femtosecond) time-

steps, to build up a trajectory over

time of the protein’s atomic-level

movements. Depending on the size

and complexity of the system stud-

ied, these calculations can contain

hundreds-of-thousands to hun-

dreds-of-millions of atoms, and can

run a simulated timescale of nano-

seconds to milliseconds. Simulations of this scale

are “compute hungry” andwith appropriate code,

can scale too many hundreds of nodes, thus are

often ideally suited to HPC architectures.

The first structures of SARS-CoV-2 proteins

appeared in bioRxiv (a preprint server, in which

researchers disclose scientific results before

peer-review and publication in a scientific jour-

nal)y in mid-February. The increased adoption of

the preprint servers for researchers working on

SARS-CoV-2 means that data are coming to light

much sooner than waiting for publication in a tra-

ditional peer-reviewed journal. For molecular

simulation, this is a game changer: such data are

particularly important for biomolecular simula-

tions as they generally require structural data as

starting points. For example, the first cryoEM

COVID-19 is

unmatched in recent

history in terms of

the devastation

it is causing, both

economically

and in terms of

human life and health.

�https://wellcome.ac.uk/coronavirus-covid-19/open-data yhttps://www.biorxiv.org
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structure of the SARS-CoV-2 spike protein was

published in Science on March 13, 2020, but the

structures it disclosed were made available for

researchers via the Protein Data Bank at the time

of the preprint’s deposition into the bioRxiv on

February 15, 2020. Early access to these data

enabled biomolecular simulation researchers to

start working with the structure at least one

month sooner than they otherwise would have.

Similarly, crystallographers rapidly solved and

shared the structure of the SARS-CoV-2 main pro-

tease, an enzyme that chops up viral polypeptide

to make the proteins the virus needs to assemble

in cells. The Protein Data Bank now contains

many structures of several viral proteins (solved

by groups across the world), including structures

bound to small molecules that may be useful in

the search for new drugs.

Another shift in research culture has been

increased interaction via social media, such as

Twitter, which together with pre-

print servers, webinars and video

meetings, are helping to connect

scientists across the globe working

on this grave threat. News of manu-

scripts, data, and preprints quickly

spreads worldwide. Virtual lab

meetings and conferences held

over Zoom, WebEx, Skype, Blue-

Jeans, Google Meet, Microsoft

Teams, etc., have taken hold and

suddenly the global research community has

been rapidly connected in new ways. This has

helped to compensate for the cancellation and

postponement of physical scientific meetings

and conferences. The increased spread of infor-

mation, data sharing, and discussion through

emerging communication mechanisms continues

to help drive knowledge generation, links betw-

een research communities and scientific discov-

eries about the virus and the complex disease

that it causes.

In common with other scientific fields. An

outcome of this realization is the commitment

made by over 200 biomolecular simulation

groups, from many countries, to a set of shared

principles to share models and data. These prin-

ciples include using preprint servers to commu-

nicate models and results quickly, and sharing

methods and data much more quickly than

would typically happen in normal scientific pub-

lication.1 Early discussion of methods and data

sharing within the simulation community led to

the development of a collective site for sharing

methods and data through an international joint

effort by the US NSF Molecular Software Sciences

Institute and European Union BioExcel project.z

Recognizing the potential of computational sci-

ence—spanning domains from epidemiology to

data science to aerosol modeling—governments,

research funders and agencies, computer centers

and companies have prioritized COVID-19 applica-

tions, providing expansive access toHPCandother

resources. Several initiatives have been created to

support biomolecular simulation across the world

(e.g., through PRACE in the EU, ARCHER via the

UKRI/EPSRC and the HECBioSim and CCP-BioSim

networks in the U.K., RIKEN in Japan, and cloud

resources specifically donated by cloud providers

such asAWS,Oracle,Microsoft Azure, andGoogle).

Companies such as DE Shaw Rese-

arch have carried out simulations

of viral protein targets and made

the results freely available. The

folding@home project brought

together donated resources world-

wide to simulate the products

of the viral genome.2 In the U.S., the

COVID-19 High Performance Com-

puting Consortiumx brings together
the most powerful compute resour-

ces and is making them broadly available via a

rapid proposal process to researchers with appro-

priate compute needs. What started initially as a

consortium in the U.S. quickly spread to interna-

tional partnerships, includingwith the United King-

dom and Sweden, making available over 485

petaflops together with technical expertise in soft-

ware development and other resources. A key

aspect of this Consortium is that it provides a

mechanism for researchers to get fast access, with

application review on the order of days, to support

COVID-19 projects. Projects are also working to

combine simulations with other types of data and

modeling. An example in the EU is Fenix, which is a

distributed e-infrastructure providing different

types of compute and storage resources. It is being

The biomolecular

simulation community

recognized that, in

order to have maximum

impact for COVID-19,

changes to standard

practices would

be needed.

zhttps://covid.molssi.org
xhttps://covid19-hpc-consortium.org
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used by several different projects performing

COVID-19 related research. Some of them are using

the HPC resources for simulations. The infrastruc-

ture is also being used for sharing data through a

publicly accessible object store. Resources are

being allocated through different mechanisms

including the PRACE Fast Track Call for COVID-19

related projects.{

With support such as this, efforts of the biomo-

lecular simulation community are contributing to

understanding many facets of SARS-CoV-2. All of

the proteins of SARS-CoV-2 are the targets of inten-

sive modeling and simulation efforts, by many

groups across the world. Similarly, many groups

are investigating human proteins that may be

involved in the disease. Simulations are especially

valuable in augmenting and extending experimen-

tal data. A particularly relevant example pertains

to the sugary coating that the virus uses to mask

its main infection machinery (the “spike” protein)

from the human immune system. This so-called

“glycan shield” is known to exist, with a particular

composition of sugar types, but it is not possible

to appreciate what the sugary shield looks like

because of experimental limitations. Specifically,

the glycans move too much to be captured in

static images with high resolution; in other words,

we know from experiments that the glycans are

present, but scientists cannot “see” the full struc-

ture. Molecular dynamics simulations are able to

characterize the glycan shield and show how it

hides the protein from the immune system (see

Fig. 1).3–5 Simulations are revealing how parts of

the spike emerge from this shield to bind to

human proteins to infect cells. Simulations are

alsobeing used to investigate the effects of genetic

variations in the spike that have been identified by

experiments. Knowing what parts of the virus sur-

face are exposed, in what circumstances, and

which parts of the virus are protectedby this coat-

ing, allow researchers to understand better how

neutralizing antibodies may work. Understanding

the exposed portions of the spike may help in the

rational design and development of vaccines. A

number of efforts are directed at understanding

which parts of the virus will lead to B- and T-cell

epitopes and present newmethods to do so.7 Sim-

ulations may also help identify parts of the spike

structure, and the human proteins with which it

interacts, that could be targets for binding of small

molecule therapeutics.

Biomolecular simulations can help to develop

and explore experimentally testable hypotheses.

They can potentially be performed rapidly and so

“get ahead” of experiments, e.g., delivering early

predictions. Simulations can also analyze the

effects of genetic variations on the structures and

interactions of viral proteins. Computation can

test hypotheses, in some casesmore rapidly, more

cheaply, and on a larger scale than experiments.

Reverting to the example of the SARS-CoV-2 spike

protein’s glycan shield, Casalino et al. predicted—

ahead of any experimental data—that two glycans

near the top of the spike head not only shielded

the viral protein but also acted as a molecular trig-

ger that would “lock and load” the spike for infec-

tion. This hypothesis was developed and tested in

silico, and several months later, experimentally

confirmed by two independent groups. At the time

of writing of this document, several other predic-

tions are beingdeveloped andvettedby simulation

groups studying SARS-CoV-2 targets aswell as their

interactions with host proteins. Molecular model-

ing is helping to analyze recently identified

Figure 1. Simulations of the SARS-CoV-2 spike protein,

embedded in a viral membrane (pink and purple lines), are being

used to inform scientists what the spike looks like with (right panel)

and without glycans (right panel, dark blue lines), in order to

understand where neutralizing antibodies or drugs may bind.

{https://fenix-ri.eu/news/using-fenix-resources-covid-19-research
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interaction of the spike with human neuropilin cell

surface receptors6 as well as potential interactions

with the nicotinic acetylcholine receptor.7 Com-

puting in the age of COVID-19 is providing a pleth-

ora of opportunities for simulators to work in

concert with experimentalists directly, or indi-

rectly via experimentally-testable predictions dis-

closed in preprints.

Molecular simulations also have the potential

to contribute to the search for possible drugs. A

common approach in structure-based drug devel-

opment is to use in silico virtual screening meth-

ods to screen vast digitized libraries of small

molecule compounds against targets of interest.

“Docking” codes can scan large numbers of small

molecules to test whether they are likely to bind

to a protein target, such as the SARS-CoV-2 main

protease. Virtual libraries may contain tens-of-

millions to billions of compounds, far more than

can be tested experimentally. Researchers are

using molecular docking codes to identify poten-

tial binders (“hits”) among these large numbers

of compounds, aiming to provide experimental

labs with prospective compounds for testing. For

COVID-19, identification of drugs that have been

approved for other conditions (drug repurpos-

ing), or compounds close to the clinic, that may

have activity against SARS-CoV-2 targets (or

humanprotein targets involved in infection or dis-

ease pathology) is an attractive approach to find-

ing treatments that could quickly be tested in the

clinic. Docking methods are highly approximate

and of limited accuracy, so can be combined with

more rigorous and detailed molecular simula-

tions to include, e.g., the effects of protein dynam-

ics and to filter out false positives. Due to the

large size of compound libraries and depending

on the virtual screening method employed, these

studies also can utilize HPC architectures.8 A

remarkably early study at Oak Ridge National Lab

carried out a large virtual screening campaign of

FDA approved compounds to look for potential

drug repurposing opportunities and the authors

made the predicted results available on the bio-

Rxiv in late February, only days after the spike

structure was made available on bioRxiv. Since

then, many similar studies have made early pre-

dictions available via this route. Simulations are

contributing significantly to the Covid Moonshot

Project, closely coordinated with experimental

structural work and biochemical tests, in an effort

to identify novel drug leads.9

Simulations can also contribute to understand-

ing other aspects of viral proteins and their mech-

anisms, which may also help in developing drugs.

For example, asmentioned above, the SARS-CoV-2

main protease is a viral enzyme that breaks down

long viral polypeptides into pieces that form viral

proteins—essential for the manufacture of virus

particles in the cell. Understanding the chemical

mechanisms by which it does so, and its specific-

ity for particular protein sequences, may help.

Chemical reactions in proteins can be simulated

by multiscale methods such as combined quan-

tum mechanics/molecular mechanics (QM/MM)

techniques.10,11 QM/MM methods can also be

used to predict the reactivity of potential covalent

binders as inhibitors and drug leads. Emerging

artificial and machine learning methods will also

be useful in extracting information from simula-

tion data and connecting with experiment in the

search for treatments. Interactive molecular

dynamics simulations in virtual reality (iMD-VR,

Figure 2) are a new way to interact with and

Figure 2. Virtual reality is emerging as a tool to

interact with, and manipulate biomolecular

simulations. Interactive molecular dynamics

simulation in virtual reality (iMD-VR) has the potential

to contribute to structure-based drug design, studies

of protein structure and function, and education. This

cartoon depicts a user “docking” an oligopeptide

substrate into the SARS-CoV-2 main protease

(magenta), to model how this viral enzyme binds the

peptides that it breaks down as part of the COVID-19

viral lifecycle. The flexibility and atomically detailed

interactions afforded by iMD-VR allow the user to

manipulate the molecular structures to create

realistic models.

Computational Science in the Battle Against COVID-19

34 Computing in Science & Engineering



manipulate biomolecular simulations. iMD-VR is

an exciting frontier in structure-based drug

design. An early example involves small molecule

docking with iMD-VR to the SARS-CoV-2 main pro-

tease: the combination of 3-D, immersive percep-

tion for the use with the flexibility allowed by MD

allows peptide substrates to be docked into the

enzyme.12 VR also offers huge potential for data

sharing and distributed collaboration: when iMD-

VR is cloud mounted, researchers in different

physical locations can share the same virtual

molecular environment, interacting together with

an atomically detailed simulation and model, e.g.,

a drug binding to its protein target. This could

transform how scientists collaborate, allowing

researchers to work together directly even when

based far from each other, to share and interro-

gate biomolecularmodels.

The response of the biomolecular simulation

community—from academic groups to supercom-

puting centers, cloud providers and even chip

developers such as NVIDIA—has been impres-

sively strong and rapid, and inmany cases, coordi-

nated. Such efforts are already providing new

insights and knowledge about the fundamental

biology of SARS-CoV-2 as well as contributing to

the discovery of novel chemical agents that could

be developed into viable therapeutics. Equally

striking is how COVID-19 has the potential to cata-

lyze longer term change within the biomolecular

simulation community, including the broad adop-

tion of preprint servers for rapidly disclosing

research results, and the rapid sharing of meth-

ods, models, and data, to disseminate information

and knowledge, to test significance and reproduc-

ibility of models, and to bring simulation methods

and results to other research communities, linking

to other areas of scientific investigation to tackle

this global pandemic.
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& THE ABILITY TO quickly spin-up cloud instan-

ces that strategically match the presented

research question, alongside the increasing

availability of high-performance computing

resources, has resulted in an increased use of

cloud computing for critical computational sci-

ence research. A global pandemic, such as

COVID-19, naturally amplifies the need for rapid

development and deployment of tools that can

have an impact. The dire circumstances evolving

in spring of 2020 led to increased hospitalization

rates and estimates of shortages of ventilators

within the U.S. alone of between 45 000 and

160 000.1 Ventilators are an essential component

of life-preserving treatment for patients with

respiratory failure and a shortage of ventilators

was predicted,2 and in some cases realized,3

early in the global pandemic. As a result, consid-

erable effort has been focused on methods to

share one ventilator amongst multiple patient-

s.1;4;5 However, due to safety concerns6 with pre-

existing ventilator splitting strategies, ventilator

splitting in the past has not been recom-

mended.7 In collaboration with restor3D (a local

biotechnology company, https://www.restor3d.

com/), a large team of engineers and clinicians at

Duke University developed a ventilator splitter

and resistor system (VSRS) aimed at increasing

the safety profile of ventilator splitting by accu-

rately predicting the delivered tidal volumes and

pressures under the wide range of clinically rele-

vant situations. To achieve this task, it was nec-

essary to quickly develop and deploy new

strategies of ventilator splitting, combining 3-D

printed components designed to fit standard

ventilator tubing (see Figure 1: top) with exten-

sive computational modeling to ensure that

each patient would receive a safe degree of ven-

tilation (see Figure 1, bottom).

With the validated device in hand, the

remaining question was how to tune it for any

given patient pairing and, further, how to pro-

vide this decision support in an intuitive way to

the clinicians. Addressing these questions pre-

sented unique challenges in an environment

with significant time pressure. The entire pro-

cess, from design of a new computational model,

to architecting an appropriate computing envi-

ronment, to creating a user interface, presented

many challenging opportunities of interest to

high-performance computing and biomedical

researchers facing problems driven by short

turnaround times. This article summarizes our

design decisions and lessons learned during

model design, HPC resource procurement and

deployment, and execution of a massively paral-

lel solution using over 800 000 compute hours in

a 72 h period. The total time to create the initial

model, validate it against benchtop data, deploy

the model at scale, and to collate the simulation

results into an easy-to-use mobile app was less

Figure 1. Top: Three-dimensional (3-D) printed

splitter (in blue) connected to the resistor (silver).

Airflow from the ventilator comes into the VSRS from

the left and heads to the patient who requires the

resistor (top right) or without the resistor (bottom

right). Bottom: Example output from the numerical

model without a resistor for a PIP of 30, PEEP of 8,

and I:E of 1 (acronyms explained in Table 1),

demonstrating how predicted tidal volumes vary

greatly and nonlinearly from multiple parameters,

specifically pulmonary compliance, respiratory rate,

and endotracheal (ET) tube size. The result for two

different ET tube sizes are displayed, with an 8 mm

ET tube resulting in greater tidal volumes than a 6

mm ET tube. Red colors demonstrate potentially

highly dangerous tidal volumes.
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than one month. We expect that these experien-

ces can be applied by the computational science

community to future research questions requir-

ing rapid deployment.

DESIGN: MODEL DEVELOPMENT

Establishing a Numerical Model

A numerical model was established to aid

clinicians in their use of the VSRS, by calculat-

ing the airflow characteristics and distribution

through the system over a wide range of oper-

ating conditions. Under the dire circumstances

of a global pandemic, not only was time-to-

solution a driving design goal, but similarly

was minimal development time. In conven-

tional computational fluid dynamics research,

time would be taken to optimize the code and

the simulation setup so that the run-time of

each simulation was minimized. Such an effort

typically requires significant man-hours to

establish a validated and optimized computa-

tional model. The challenges in developing the

VSRS model were the competing needs of 1)

creating a robust, well-validated, and accurate

model to ensure that clinicians can deploy the

VSRS while minimizing harm to their patients,

and 2) the need to deliver results as quickly as

possible.

Due to a lack of well-established numerical

models available for ventilator splitting, we

developed our own model to explore the general

dynamics of a system where multiple patients

are connected to one ventilator. Specifically, we

approached the problem by using lumped

parameter models to solve the governing equa-

tions of mass, energy, and momentum conserva-

tion in order to simulate airflow from a

ventilator source to a patient’s lungs. The lungs

were modeled as a Hookean spring and viscous

dashpot in parallel to represent the pulmonary

compliance and resistance, respectively. The rel-

evant inputs to the model are described in

Table 1 and Figure 2, and the outputs are time-

series of delivered tidal volumes (which can be

condensed as displayed in Figure 1, bottom) and

pressures.

The ideal modeling tool for this task would

be one which can be run locally, is highly flexi-

ble to allow different configurations and

patient parameters, and is readily scalable and

computationally efficient so that it could even-

tually be deployed for a massive parameter

sweep. MATLABs Simscape has an easy-to-use

GUI, which allows for rapid generation of

highly flexible models that can run easily on a

laptop. This allows one to experiment with the

significance of different parameters and model

configurations, however, using a higher-level

proprietary software that requires a license to

run potentially meant that we would encounter

issues with scalability and efficiency when

deploying the model at scale. While we chose

MATLAB due to previous experience with the

modeling software in an effort to decrease

time to model generation, open source alterna-

tives, such as OpenModelica or Scilab, could

have been explored as well.

The initial models helped us make fundamen-

tal observations, which were key to designing our

large-scale parameter sweep. Of note, we discov-

ered that the one ventilator mode (pressure-con-

trolled ventilation) was inherently safer for

ventilator splitting than another (volume-con-

trolled ventilation). Additionally, the preliminary

models demonstrated that a decoupling occurs

when multiple patients are placed on pressure-

Table 1. Input parameters to the numerical model.

Parameter Name Units
Min
Value

Max
Value

Step
Size

# of
Values

Peak Inspiratory
Pressure (PIP)

cmH2O 20 50 1 31

Positive
End-Expiratory
Pressure (PEEP)

cmH2O 5 20 1 16

Inspiratory to
Expiratory
Ratio (I:E)

ratio 1:3 1:1 fraction 7

Respiratory Rate
(RR)

breaths
min 10 30 1 21

Pulmonary
Compliance

ml
cmH2O

10 100 1-2 46-91

Endotracheal Tube
(ET) Diameter

mm 6 8.5 0.5 6

Resistor Radii mm 2.5 5.5 1 7

Final parameters, along with the minimum, maximum, and step size, and
discrete values explored, that were required for the large parameter
sweep. Step sizes were determined so that an incremental change
resulted in less than a 5% change in delivered tidal volumes. The top
four parameters are ventilator settings (PIP, PEEP, I:E, RR), the next two
are patient-specific considerations (Compliances and ET tube size), and
the final one is a circuit configuration parameter (Resistor size).
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controlled ventilation, such that there is no inter-

action between patients connected to the same

ventilator. This finding was important because it

fundamentally changed our computational task.

Namely, instead of simulating every possible com-

bination of ventilator parameters as well as both

patients’ individual characteristics, this permit-

ted the more tractable task of solving for every

possible combination of ventilator parameters

and a single patients characteristics.

This difference ultimately reduced the num-

ber of simulations we had to perform by several

orders of magnitude (270 million as compared to

125 billion) and turned an intractable task into a

large, but achievable computational challenge

given the time constraints.

A final important outcome from the initial

testing was to understand the sensitivity of our

outputs of interest, which are tidal volumes (see

Figure 1 bottom) and delivered pressures, to the

many input parameters (see Table 1). The mini-

mum and maximum values for various parame-

ters were known from clinical experience, but

how finely we would have to sample parameter

space was unknown. To overcome this, we per-

formed sensitivity tests to determine the granu-

larity with which we would have to sample

parameter space in order to guarantee precise

results within an acceptable level of uncertainty.

With this knowledge, and initial speed tests of

the numerical model on local resources, we

were able to estimate the number of simulations

and compute hours that would be required,

assuming that we were able to efficiently scale

the model to larger systems.

Lesson Learned 1: Using low overhead tools,

such as MATLAB’s Simscape, for initial modeling

can enable rapid acquisition of baseline intuition

needed for design of the large-scale study.

Embarrassingly Parallel Design

The goal of this project was to provide a deci-

sion support tool to aid clinicians in their use of

the VSRS. To this end, we needed to precalculate

the expected airflow for any potential patient-

and ventilator-derived values, so that the result-

ing data could be made available in realtime to

help direct the choice of resistor. As described

in Table 1, there are seven parameters serving

as input to the simulation. For the four ventilator

settings in Table 1 (PIP, PEEP, I:E, RR) and ET

tube diameters, the step size was chosen to

allow clinicians to have an equal level of granu-

larity as they would with a standard ventilator,

with minimum and maximum values chosen

based on clinical experience for the range of real-

istic clinical scenarios. The compliance step size

was set such that a step change in compliance

would lead to less than a 5% change in tidal vol-

umes. Determining the number of values to

explore was derived from discrete subtraction of

the minimum from the maximum value, divided

by the step size.

Figure 2 displays the chosen hierarchy for

the parameter sweep. The batch submission

script generates two jobs (one for the model

with a resistor, one for the model without a

resistor) for each combination of PIP, PEEP, I:

Figure 2. Illustration of the directory structure, job

types, and output file structure for the 7-D

embarrassingly parallel parameter sweep. The

number of parameters at each level are in

parentheses. For each combination of PIP, PEEP, I:E,

and RR, two jobs were submitted, for the cases

without a resistor and one for cases with a resistor.

Those jobs then swept through the parameters of ET

Tube sizes, resistor sizes (if applicable), and

pulmonary compliances, totaling over 270 million

different simulations.
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E, and RR. Each job then sweeps through the

different ET Tube sizes, Resistor sizes, and

Compliance values. Due to the embarrassingly

parallel nature of the parameter sweep, it was

possible to break up the number of simulations

into jobs in a variety of different ways. Ulti-

mately, a balance was chosen such that an

average job would last approximately 5 h and,

therefore, resubmitting a failed job would not

incur an undue strain on the allotment. Addi-

tionally, this results in a manageable number

of writes to disk, with a tolerable overhead

cost for each job.

With a cloud-based environment different

node counts can be running, and generally speak-

ing there is a lot of flexibility. This is well suited for

an embarrassingly parallel framework. We further

optimized the design by having each simulation

save the time-series data for pressures and tidal

volumes to the local disk. This was facilitated by a

hierarchy that identified where in parameter

space that simulation occurred, for ease of post-

processing and collating the results. In order to

not overwhelm the storage capacity on-node,

prior to completion the job would postprocess

the results by: 1) determining the tidal volume,

maximum pressures, and minimum pressures at

the steady state, 2) delete the time-series data,

and 3) create a reduced precision csv file with a

row for each simulation that was included in the

job. This configuration was designed to allow for

easy debugging and resilience against network

outages. Namely, one could look at the files on-

node to determinewhich specific simulation failed

by finding the last successful output in a parame-

ter sweep. In total 146 000 intermediate csv files

were created, for which subsequent scripts were

deployed to concatenate them along the directory

structure until the final data table was ultimately

produced.

Lesson Learned 2: Relying on an embarrass-

ingly parallel framework allowed us to match

to a dynamic cloud-based environment, to best

facilitate the required large-scale parameter

sweep.

DEPLOYMENT: DYNAMIC CLOUD
COMPUTING

With the initial modeling was complete, the

next step was to develop a method for deploying

the model at scale. In this section, we will dis-

cuss the unique opportunities provided by

deploying on a cloud platform, unexpected chal-

lenges with maintaining an embarrassingly paral-

lel code at scale, solutions we implemented, and

how the hundreds of millions of simulations

were synthesized into an intuitive and portable

interface for clinicians.

Problem-Oriented Architecture Design

To obtain access to high-performance comput-

ing resources on a scale similar to what was

required for this project, it is common practice to

submit an architecture-targeted proposal request-

ing compute hours on a specific resource. While

drafting such a proposal, care is taken to demon-

strate feasibility, run-time, and parallel perfor-

mance on the targeted system, since efficiency is

paramount on these precious resources. For our

project, however, the emphasis was the need for

haste in solving the problem, which led to us seek-

ing methods that were almost agnostic to the

underlying hardware. The COVID-19 HPC Consor-

tium (https://covid-19-hpc-consortium.org/) pro-

vided a unique opportunity for describing the

needs and constraints posed by the problem,

which could then be paired with an appropriate

and available resource allocation. In this case, we

had a working, validated code that could easily

run on a variety of different platforms. The embar-

rassingly parallel nature of the setup meant that

network connectivity was less of a consideration,

and that our primary need was a large core count

with sufficient memory (2–4 GB of memory-per-

core) so that each core could independently com-

plete a simulation without being bottlenecked by

shared memory. Most importantly, we needed

access to a high-throughput resource, where jobs

could be submitted and executed quickly.

Although time-to-solution was important, the con-

straints allowed some flexibility. For example,

individual job run-time was not a concern, nor

was the order of completion; if some jobs took lon-

ger to run than others, that was acceptable. The

overriding need was to turnaround completion of

all of the jobs within a few days so that the data

were available for FDA review of the device and

associated clinical support software. Rather than

requesting a set number of core hours corre-

sponding to jobs on set architecture and node
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sizes, the Consortium afforded us the ability to

describe the problem, needs, and constraints.

This flexible, problem-oriented design process

facilitated a more efficient and effective matching

of resources to problem that played a critical role

in our ability to successfully accomplish our

stated research goals.

The shift to a problem-driven approach was

further enhanced through being paired with the

Microsoft team for computing resource coordina-

tion and administration. The Consortium pro-

vided resources through the Microsoft cloud

computing infrastructure, Azure. The use of a

cloud-based architecture was a strong fit for our

needs based on the ability to configure the infra-

structural aggregate to suit the problem at hand.

Thus, as we were leveraging an embarrassingly

parallel setup, there was no necessity for the node

count to remain fixed over the course of the simu-

lations. Throughput, resilience, and resource

availability could be balanced in a dynamicway as

node counts assigned to the jobs could fluctuate

throughout the execution duration. In the initial

meetings between the Duke and Microsoft teams,

we were able to outline the problem and associ-

ated resource needs to allow a cloud instance to

be configured and tuned specifically to meet our

need. As mentioned, we opted for an implementa-

tion that left each parameter-based simulation

contained in an independentmannerwithminimal

data collection and analysis handled between

small groups of tasks. Therefore, rather than a

tightly coupled, MPI-basedmodel, wewere able to

employ a minimal communication, embarrass-

ingly parallel framework. This design choice

resulted in the processor selection being of far

more consequence than choice of interconnect,

so we searched for an Azure cloud configuration,

which would allow for the largest core count at

the lowest cost per core. The goal of maximizing

throughput and minimizing wall-time could only

be accomplished by taking advantage of as many

nodes as was economically feasible. Shared

storage requirements were relatively minimal,

since individual compute nodes did not need

to reference considerable shared data and post-

processing was designed to be performed on the

local node; requirements were limited to those

necessary for job submission—Slurm configura-

tion and the users home directory. In order to

scale the NFS filesystem on the head node to sup-

port hundreds of nodes connecting back to it, a

managed premium disk was attached to the head

node to use as the NFS export. With these consid-

erations, the team was able to define a rough

architecture using the Azure HB-series VMs, a

basic NFS filesystem, and a Slurm front-end to

manage job scheduling, all orchestrated by Azure

CycleCloud. Slurmwas chosen as the cloud sched-

uler to allow a seamless transition from our local

cluster, which also used Slurm, to the cloud, yet

another benefit of being able to fully customize

the cloud architecture to meet the needs of the

project. As a result, wewere able to rapidly deploy

our model with minimal time spent altering

the code.

With an architecture defined, the next step

was calculating the number of cores needed to

meet the timeline. Based on this architecture

and the desired timeframe, 24 000 cores were

estimated to be needed to complete the project

in 2 days (24 000 cores � 48 h gave a total of

1 152 000 core hours). Alternatively, if we

attempted to complete this task with only local

resources (for example, by having unrestricted

access to 1000 cores), the total time to solution

(over a month) would have delayed our ability

to combat the initial surge in COVID cases. Due

to the computations not requiring communica-

tion between compute nodes and the capabili-

ties of Azure, it would have been possible to

secure the necessary number of cores by com-

bining allocations from several geographically

distinct locations—with some jobs running in

Europe, for example, while others might run in

South America. In order to simplify the debug-

ging of failed jobs and minimize administrative

overhead, however, all nodes were allocated

within the same datacenter in Western Europe;

thus, 24 000 cores (using the Azure individual

node type “HB60s”) were made available by

Saturday.

Lesson Learned 3: By configuring the cloud

architecture to match the needs of the problem (a

problem-oriented approach) instead of manipulat-

ing the problem to fit the constraints of the platform

(an architecture-oriented approach), we were able

to be prepared to rapidly deploy our model.

Lesson Learned 4: By mimicking the feasibility

testing environment, and thereby minimizing the
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need to rework scripts, we were able to rapidly

implement our model at scale.

EXECUTION: COMPLETING 800 000
COMPUTE HOURS OF SIMULATION
IN 72 H

In order to successfully complete the com-

puting challenge, it was important to anticipate

issues before they arose and to design the sys-

tem architecture accordingly. However, some

issues with underlying dependencies and hid-

den performance bottlenecks only arose when

the model was deployed at the full scale. Solv-

ing these issues rapidly was paramount to

being able to complete the computational task

without depleting the allotment of compute

hours.

Identify Underlying Dependencies

While initial performance testing on the

cloud behaved as expected, significant slow-

downs were observed while attempting to spin

up all of the nodes and deploy the model. This

eventually reached the point where job submis-

sion became infeasible and performance levels

were significantly below expectations (both in

terms of concurrently running jobs and comple-

tion rates).

To investigate this, we identified all com-

munication channels, storage locations used,

and potential hidden bottlenecks in the archi-

tecture and configuration of the supporting

software. In this manner, a number of issues

were addressed, including network addressing

and Slurm scheduler tuning. The most significant

issue identified was that file I/O from the head

node slowed and eventually stopped. The cause

was identified as the shared NFS filesystem being

written to by all the running jobs, but only mini-

mally; the I/O load was not commensurate with

the slowdown being experienced. The underlying

reason was a MATLAB-specific setting associated

with the simulation execution, related to the loca-

tion of the preferences directory. While unrelated

to the simulation itself, this emphasizes the impor-

tance of running full-scale tests to identify hidden

infrastructure interactions.

Lessons Learned 5: Beyond initial perfor-

mance testing, full-scale tests deploying the model

helped to identify hidden dependencies causing

severe performance degradation.

Look for Hidden Performance Bottlenecks

Hidden performance bottlenecks at scale

can create significant increases in necessary

compute hours. For example, MATLAB is based

on run-time compilation, and the time to com-

pile the code was several factors larger than the

time necessary to simulate the model for a

given set of parameters. As a result, a primary

consideration to maintain efficiency was to min-

imize time spent compiling. Fortunately, there

is built-in functionality in MATLAB to perform a

parameter sweep without recompiling the code

for each iteration of a parameter sweep. This

was only possible to implement, however, for

sweeps over patient parameters; this was not

easily achievable for sweeping through ventila-

tor settings or changes in the circuit architec-

ture. We took advantage of this by organizing

the simulations into separate jobs for which

only one compilation was required per job. This

resulted in the 270 million simulations being

handled by 146 000 jobs, which drastically

jminimized wall-time by reducing run-time

recompilation.

Use of a folder directory architecture (see

Figure 2) whereby files are stored across multi-

ple directories, reduced slow-down associated

with reading and writing to disk compared with

single-directory storage. This was an important

consideration given the significant I/O associ-

ated with the Oð105Þ files associated with the

146 000 jobs. An additional advantage of storing

both the submission scripts and output in this

separated-directory structure was the triviality

of generating auxiliary scripts for detecting fail-

ures in either the job submissions or model out-

put generation; this allowed problematic jobs to

be easily found and resubmitted.

To decrease data storage and transfer require-

ments, all postprocessing was performed on-node

immediately after each simulationwas completed,

with intermediate results deleted. This converted

the time-series output into three values (the

steady-state tidal volume, maximum delivered

pressure, and minimum delivered pressure),

which were stored only at the clinically relevant

precision. As a result, what would have required
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over 100 TB of storage space was decreased to

approximately 10 GB.

Lesson Learned 6: Job organization with a

run-time compilation code like MATLAB is impor-

tant to minimize recompilation and, thus, maintain

the embarrassingly parallel characteristic.

Lesson Learned 7: I/O, data storage, and trans-

fers can be improved through specific usage of

directory structures and on-node postprocessing.

TRANSLATION: ESTABLISHING AN
INTUITIVE INTERFACE

With simulations completed, the remaining

challenge was how to provide this data back to

the clinician in a way that is simple, intuitive,

up-to-date, and minimizes the chance of error.

A mobile app, both for iOS and Android, that

can run on low-end mobile phones as well as

high-end tablets maximizes portability of the

VSRS to global health scenarios as well as high-

tech ICUs. Using a mobile app allows for a

native, performant user interface (see Figure 3)

and the ability to save and retrieve deidentified

input value sets locally on the device. As the

final data table, which stores all of the precom-

puted results, is larger than 10 GB, it is unlikely

to be easily stored on low-end mobile phones.

Consequently, it was decided to have the

mobile app connect to a cloud-based API to

receive the input values and return the corre-

sponding results from the indexed database.

While an Internet connection is necessary to

retrieve new results, the installed app approach

also leaves the door open to potentially pre-

caching the data on high-capacity mobile devi-

ces should a no-Internet version be necessary

in the future. An advantage of the cloud-based

API is that it allows for clinicians to have the

most up-to-date and accurate results at their

fingertips. While the VSRS exclusively makes

use of a mobile app, a remote webform is a rea-

sonable alternative that could deliver similar

functionality as the mobile app.

As the data were precalculated, the end-user

would need to query precalculated results based

on a diverse but fixed number of input possibili-

ties. Taking advantage of this and with an intent

to reduce possible user-error, we followed a

selection-based UI paradigm (akin to tabs and

drop-down menus). This ensured that clinicians

would only be able to input values that were con-

sistent with the precomputed results and that no

errors, such as confusion with unit conventions,

would occur.

Lessons Learned 8: A cross-platform mobile

app with a selection-based UI maximizes usability

in various hospital settings, while minimizing user

error.

CONCLUSION
Multiple lessonswere learned in the process of

rapid development and deployment of a parallel

numerical model to support the clinical use of the

VSRS in the event of ventilator shortages. Unlike

conventional research projects that are designed

and executed over months or years, a unique set

of challenges arise for projects requiring rapid

and agile development and deployment. The bal-

ance of developer time versus compute time

under severe time-to-solution constraints leads to

substantively different design choices. This article

is an attempt to organize and articulate the valu-

able lessons learned in the process of generating

Figure 3. Illustration of themobile app’s input (left) and output

(right) displays. Note that the inputs are fromadrop-downmenu and

are not free text fields to reduce the possibility of clinician error. The

displayed output is for the case of the user querying the results for a

3mm resistor.
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the data necessary to guide resistor choice when

using the VSRS to split ventilators between two or

more patients.

For example, utilizing physical intuition

gleaned from preliminary modeling can assist in

the development of an embarrassingly parallel

numerical model, which is advantageous for per-

forming large-scale parameter sweeps in HPC

environments. A cloud architecture as the HPC

environment allows for platform customization to

match the needs of the problem, instead of having

to coerce the problem into functioning on the

platform, which leads for rapid deployment. In

order to avoid significant slowdowns when an

embarrassingly parallel code is deployed at a

massive scale, it is important to analyze the code

and communication channels for hidden depen-

dencies and performance bottlenecks. Last, for

the results of the hundreds of millions of simula-

tions to be utilized to help combat COVID-19, it is

essential to create an intuitive user interface, with

effort placed to minimize the potential user error.

These lessons learned from rapidly deploying

almost one million compute hours in a cloud-

based infrastructure for a COVID-19 target are

applicable to other situations where researchers

have maximal motivation to minimize time-to-

solution.
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APPENDIX
Airflow Numerical Model

Air flow was simulated as a lumped parameter model
using MathWork’s Simscape pipe flow dynamics pack-
ages, which solve the laws of mass, momentum, and
energy to determine the pressure, velocity, density, and
temperature of gas as it travels through a network of pipes.
The ventilator was modeled as either a volume or pressure
source with a specified waveform representing the user-
defined ventilator settings (PIP, PEEP, I:E, RR). Gas flow is
then simulated for the travel though standard ventilator
tubing, where it then interacts with the splitter, resistor of set
diameter, endotracheal tube of a given size, and the
patient’s lungs. The lungs were modeled as a Hookean
spring, representing the inverse of the compliance of the
lungs, and a viscous dashpot, representing the resistance
of the lungs, in parallel.8 The range of input parameters to
the model were chosen based on simulating the wide
range of ventilator settings, endotracheal tube sizes, and

pulmonary characteristics that clinicians could encounter
when treating patients with respiratory failure. Models were
simulated until the gas flow to the lungs reached the
steady state. Sensitivity tests were conducted to determine
the granularity of the parameter sweep necessary to
ensure that a change in tidal volume of less than 5%
occurred for a given step size.

The model was validated against benchtop data.
Using an anesthesia care station ventilator, standard tub-
ing, the 3-D printed splitter and resistor system, standard
endotracheal tubing, and artificial test lungs, experiments
were performed to determine the delivered pressures and
tidal volumes to the artificial test lungs for different ventila-
tor settings. When these same settings were used as inputs
to the numerical model, the predicted tidal volumes were
found to be in excellent agreement with those from the
benchtop experiments.
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Abstract—We introduce a trans-disciplinary collaboration between researchers,

healthcare practitioners, and community health partners in the Southwestern U.S. to

enable improvedmanagement, response, and recovery to our current pandemic and for

future health emergencies. Our Center work enables effective and efficient decision-

making through interactive, human-guided analytical environments. We discuss our

PanViz 2.0 system, a visual analytics application for supporting pandemic preparedness

through a tightly coupled epidemiological model and interactive interface. We discuss our

framework, current work, and plans to extend the systemwith exploration of what-if

scenarios, interactive machine learning for model parameter inference, and analysis of

mitigation strategies to facilitate decision-making during public health crises.

& MAKING TIMELY, EFFECTIVE, science-based deci-

sions to mitigate the impact of a pandemic is a

very difficult and highly complex task requiring a

decision-maker to evaluate multiple disparate

data sources. Decisions such as when to reopen

require collecting and integrating accurate infor-

mation on an array of the characteristics, inc-

luding: disease spread dynamics, prevalence of

infections when initially detected, capacity and

supplies available at all hospitals in the state, the
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effectiveness of eachpotentialmitigation strategy,

the delay in adopting mitigation behaviors, and

assessing public compliance with public health

measures, and other public behavior.

Our approach to addressing these problems is

to combine available data from State Departments

of Public Health, population demographics, fine-

scale population behavior and mobility data and

predictions, multiple advanced epidemiological

models, epidemiologists, and continuously refined

predictions and data-driven model parameters,

into a decision-making and situational awareness

dashboard to enable evaluation of current situa-

tion and strategies for implementing nonpharma-

ceutical interventions (NPIs).

Given that the data landscape surrounding

COVID-19 is evolving so quickly, we emphasize

that work will continue for quite some time. We

present the initial results of a trans-disciplinary

collaboration between research-

ers, healthcare practitioners, and

community health partners in the

Southwestern U.S. to help enable

improvedmanagement, response,

and recovery options for our cur-

rent pandemic and future health

emergencies through thedevelop-

ment of an integrated data dash-

board. This dashboard and associated technical

advances enable a decisionmaker to:

� model and visualize how NPIs impact the

spread of COVID-19;
� monitor the spread of COVID-19 related news

on various social media platforms;
� design effective risk communication strate-

gies to ensure compliance with NPIs.

These advances are central to the new Center

for Integrated Public Health Monitoring, Analysis

and Decision-making (CIPH-MAD), a collaboration

of researchers and decision-makers dedicated to

predicting and mitigating public health emergen-

cies in the South-western US. This work is applica-

ble to future pandemic and public health

emergencies by providing a framework to integrate

and synthesizemultiple disparate data sources.

BACKGROUND
Early detection and action are key to mitigat-

ing the effects, as demonstrated with the

successful response to Ebola. Effective detection,

mitigation, and response rely on accurate infor-

mation, analytics, and predictions of the effect of

interdiction/mitigation strategies. Over the past

nine months, there has been great progress in

gathering data on the COVID-19 pandemic. New

data sources, including social mobility data and

public health electronic surveillance data, are

becoming available and are being used effectively

in a few locations. These new sources greatly

increase situational awareness and provide rapid

feedback regarding the effectiveness of various

public health actions and policies.1 However, the

available data are often conflicting, biased due to

sampling, and incomplete. Given the size, scope,

and complexity of pandemic data, it can be diffi-

cult for a decision-maker to gauge the effective-

ness of different mitigation strategies without

effective computational support.

Fortunately, Visual Analytics

(VA) tools and techniques allow a

decision-maker to address certain

problems whose inherent size, com-

plexity, and need for closely cou-

pled human and machine analysis

may make them otherwise intracta-

ble. The advantage of using a VA

system in a disease modeling and

mitigation context is that a decision-maker can

compare and contrast the effect different inter-

vention techniques—including social distancing,

mask usage, or closing schools—will have on the

spread of a given disease throughout a region.

Furthermore, a decision-maker can use a VA sys-

tem to explain to other stakeholders and the

public what the near- and long-term effects of a

particular decision will be. VA systems can com-

municate complicated and nuanced findings

from statistical models to a larger audience.

Previous VA work has demonstrated the

effectiveness of interactive decision support

tools at identifying intervention policies. One

tool, PanViz,2 was initially developed to provide

public health officials from the Indiana State

Department of Health with a suite of visual ana-

lytic tools for analyzing pandemic influenza

spread, while enabling these officials to analyze

various decision points (e.g., school closure,

strategic national stockpile release) and their

impact on disease spread. The tool allowed for

The goal is to create an

interactive decision-

support and dashboard

system for interactive

public health situational

awareness, planning,

and response.
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demographic filtering by age ranges, and interac-

tive manipulation of model parameters to allow

users to create various levels of pandemic sever-

ity in order to assess various situations. Using

this tool, health officials could analyze resources

and decision outcomes in order to prepare more

effective measures for potential pandemics. This

work was expanded upon in subsequent itera-

tions to model the spread of Rift Valley Fever

and Dengue Fever and predict successful public

health containment procedures.3,4 PanViz is not

the only VA tool developed for tracking and pre-

dicting the spread of pandemics; however, it is

one of the only ones that focuses on multiple lev-

els of preparedness and mitigation.

A limitation of PanViz is that it was not initially

designed to update with incoming surveillance

data. Moreover, it does not accommodate behav-

ioral or social science data. Understanding behav-

ioral data is beneficial to an analyst because it

permits a deeper understanding of how the public

views, interprets, and responds to information

about the pandemic, enabling a decision-maker to

tailor public announcements about the need to

close schools or engage in social distancing while

gauging how the public perceives the burden. To

address this gap, members of our team are cur-

rently engaged in a continuously updated behav-

ioral monitoring survey, focused on COVID-19

related beliefs and behaviors in the U.S. (NSF

RAPIDGrant 2026763), aswell as analysis of Twitter

data related to COVID-19.We are also collaborating

with researchers at Purdue University, University

of West Florida, and Arizona State University to

explore social mobility data for more effective

measures of the impact of NPIs (NSF RAPID grant

2027524). These data will be leveraged to permit

analysis of how changing perceptions and behav-

iors among the public affect later infection rates

across regions of the US. The results will be incor-

porated into PanViz 2.0, allowing for a blending of

more traditional Susceptible, Infected and Recov-

ered (SIR) infection spread models, data-driven

models, and agent-based models with up-to-date

perception, attitudinal, and effectivenessmodels.

PANVIZ 2.0 OVERVIEW
The decision making in the context of combat-

ing COVID-19 or similar future pandemics requires

a workflow to transform raw data into actionable

information including statistics, visualization, and

interaction from a variety of sources. The work-

flow employed by PanViz2.0 was inspired in part

by our previous research developing and evaluat-

ing novel VA applications.5 Below, we introduce

the reader to the PanViz 2.0 interface and compu-

tational architecture while providing a road map

for planned improvements.

PanViz 2.0 Design

Our current decision-support framework sys-

tem builds upon our earlier PanViz work in public

health syndromic surveillance, pandemic pre-

paredness, and decision support for other person-

spread and mosquito-spread conditions.2 PanViz

was used extensively during the 2008–2012 pan-

demic preparedness activities in the United States

by numerous counties and states. The PanViz 2.0

visual analytic framework prototype is a re-engi-

neereddesign basedonour experience indevelop-

ing and deploying visual analytic decision support

systems over the past decade. The prototype,

shown in Figure 1, is built upon a mathematical

epidemic model to calculate population dynamics

and infection rate data and enables decision-mak-

ers to interactively choose mitigation strategies

and see the impact of their decisions.6 PanVis 2.0

improves upon PanViz in several respects, inc-

luding the system architecture, ability to incorpo-

rate behavioral, social movement and dynamics,

and observed data for improving accuracy and

predictions in the system, and adds interac-

tive decision-making features. In concert, these

Figure 1. Overview of new PanViz 2.0: (left) control panel for

fine-tune of model parameters and configuration of visual

representations, (middle) spatial distribution of a selected case

category, (right) temporal visualization of different case categories.
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changes facilitate data- and human-guided, sci-

ence-based AI-driven analysis of public health

data for improvedpreparedness.

PanViz 2.0 System Architecture and Interface

PanViz 2.0 has been converted from a desk-

top system to an intuitive web-based application

to address the portability and scalability prob-

lems, as multiple users can now access the sys-

tem from any web browser. It consists of a

backend Flask server and frontend web user

interface. The server dynamically executes the

model simulation for a given set of parameters

(as controlled and updated by the user). The

web interface (see Figure 1) uses the React Java-

Script library for efficient frontend rendering

and interactivity. Users can modify the model

features, parameters, and parameters to be visu-

alized (first panel on left-hand side of Figure 1),

interactively visualize the model simulation over

time in the geographic space (center panel of

Figure 1), and simultaneously visualize time

series data of county-, state-, and national-level

infection, death, and hospitalization numbers

(panels on right-hand side of Figure 1).

PanViz 2.0 also supports county-level disease

parameterization. Users can configuremodel para-

meters for each county to appropriately account

for locally dependent transmission dynamics,

such as the demographic impact, spread rate (as

controlled by population density), mortality rate,

implemented decision measures, and hospital

capacity. We plan to incorporate sophisticated

machine learning and data mining techniques to

learn highly accurate county-level parameters

from collected data for improved decision-making.

Base Epidemiological Model

The mathematical model underpinning Pan-

Viz (Malone et al.6) calculates disease dynamics

per county using a system of nonlinear differ-

ence equations derived from traditional epi-

demic models with homogeneous population

mixing derived from previous influenza and pan-

demic data and integrates an airport transporta-

tion spread model.

Disease dynamics are evaluated by combining

user-supplied values for county demographics

and population density, mortality and recovery

rate of the disease, hospitalization rate, and

baseline and modified disease prevalence. The

baseline prevalence is approximated using the

gross attack rate, which is the percentage of the

entire U.S. population that will have the disease if

no interventions are enacted. The total number of

infections in a county is calculated by age group

and is the product of county population, age group

specific disease modifiers, and the presence of

decision measures. Simulated individuals can be

either healthy, infected, recovered, or deceased

and will transition between these states at a cer-

tain rate. The likelihood an individual from any

age category will become infected is influenced by

the population density of the county they reside in

and the baseline and modified prevalence of the

disease.6 For more information on the formulation

of the model, please see the paper by Maciejewski

et al.3, andMalone et al.6

The model assumes a disease originates from

a user-defined location. The county to county

spread rate is dependent on the distance from

the origin to the county centroid, the county

population density, and demographic composi-

tion. The inclusion of the airport transportation

dynamics enables the transmission within a day

of the disease to all connected airport hubs once

the disease reaches an airport.

Time-Based Interdiction for Interactive

Decision-Making

Decision measures are critical for impeding

virus spread, although such measures may vary

considerably over time and space. Comparative

analysis of such decision measures is equally

crucial for assessing how effective and suitable

they may be for different situations. In particu-

lar, it is important to answer policy questions

such as “What decision measures should be

implemented?” PanViz 2.0 will allow users to

answer such questions by visually comparing

the effect that different decision measures have

on virus spread, as well as infection, mortality,

and hospitalization rates (see Figures 2 and 3).

When the exact parameters of such interdiction

strategies are difficult to estimate a priori or

from previous pandemic data due to transmis-

sion novelty, users will be able to explore differ-

ent estimates, such as in Figure 4, and update

them as new data are collected.
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Public officials may be interested in deter-

mining when and how long citizens should be

required to wear masks, practice social distanc-

ing, and avoid public gatherings to effectively

curtail the spread of COVID-19. Officials can

investigate their concerns with PanViz 2.0 by

comparing the virus spread and number of infec-

tions when these intervention measures are

implemented early on in the pandemic as

opposed to later. Officials can also assess these

measures’ effectiveness under environmental

assumptions such as the probability of an indi-

vidual complying with mask wearing or the con-

tinued occurrence of large social gatherings.

Using such results, officials can appropriately

determine the best course of action for interven-

tion policies. The system will also enable the

starting and stopping of different measures over

time during each wave of virus spread.

Incorporating Epidemiological Expertise

We have been working with state and local

public health officials to integrate their feedback,

domain expertise, and perspectives into the

design and implementation of PanViz 2.0. Since

portions of the team have worked with public

health professionals in the past, we recognize

the need to closely collaborate with and include

domain expert opinions to ensure the PanViz 2.0

interface and application components support

effective and actionable decision-making.

Planned Work: PanViz 2.0 for COVID-19

Due to the novelty of COVID-19, traditional

epidemiological models may fail to accurately

simulate the virus spread. Current epidemiology

studies suggest that the virus spreads from per-

son to person just as any other virus spreads, but

with potentially different parameters for when

symptoms start, time when contagious, etc. This

problem is exacerbated for lower population

regions and counties with limited case histories

or areas with unique characteristics that small

towns with large university student populations.

At the same time, these areas are also the least

prepared for an onslaught of COVID-19 cases.7,8

Regional hospitals serving such areas need to

evaluate how best to utilize their limited budgets

and resources, to meet the upcoming demand;

however, access to good information to support

such decisions is poor. Therefore, PanViz 2.0

will ingest collected data for data-driven model

comparisons against baseline simulations. In

particular, users will be able to visualize the dif-

ferences between baseline simulations and

observed COVID-19 data to explore and infer

model parameters and adjust the model’s set-

tings for future predictions (see Figure 2). Pan-

Viz 2.0 will also incorporate interactive machine

Figure 2.Mockup of the next generation of the

PanViz 2.0 UI. Users will be able to visualize the

impacts of different decision measures and what-if

scenarios on infection, death, and hospitalization

counts, compare epidemiological model data with

observed data, and estimate future predictions from

observed data with interactive machine learning.

These views will be tightly linked such that users can

input different interdiction strategies and parameter

combinations and visualize the resulting model data

in other views.
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learning for user-steerable parameter learning to

improve model predictions. Multiple model sim-

ulations with different parameters will be used

to train a neural network to predict the corre-

sponding parameters after human-review for

appropriateness. The trained model can then be

used to predict parameters for real-life data that

can be further tuned and adapted through inter-

active user analysis. Our previous work in syn-

dromic surveillance to more accurately analyze

surveillance data, reducing anomaly false posi-

tives while modeling and predicting incident

occurrence in the upcoming 14 days,3 will be

incorporated as well to harness trustable data-

driven predictions for interdiction planning.

While past data can be useful for tuning the

model, there is still a degree of uncertainty

regarding future trends. Therefore, PanViz 2.0

will also support sophisticated exploration of

what-if scenarios by allowing users to select

different parameter combinations and visually

compare them (shown in Figure 2). For exam-

ple, the user may be interested in determining

how the virus spread changes under different

spread rates, hospital capacities, and demo-

graphic impacts. Finally, we are in the imple-

mentation and refining phase of both the

visual design and technical implementation of

PanViz 2.0.

PANVIZ 2.0 AND SOCIAL MEDIA DATA
Since early 2020, part of our team at the Uni-

versity of Oklahoma National Institute for Risk

and Resilience (NIRR) has pursued several proj-

ects focused on the COVID-19 pandemic. In

January, they implemented a broad collection of

social media posts from Twitter’s API using a

basket of search terms. That collection includes

approximately 300 million posts, amounting to

half a TB of data. These data are used to identify

the evolving array of COVID-19 communication

Figure 3. Users can compare the cumulative effects (here in terms of lost and saved lives) of various

decision measures against the baseline simulation to assess their effectiveness. Example result shown is from

previous work with Rift Valley Fever.4

Figure 4. User-configurable parameter window. Users can set

the appropriate parameters for each county.
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networks using the Louvain community detec-

tion algorithm on the largest connected compo-

nent of the retweet network drawn from the

most prolific accounts (minimum three tweets

per day) to prune the network. Weekly samples

are drawn from the top tweets (according to Pag-

eRank scores) within each cluster and catego-

rized by human coders to track the content of

social narratives.

As shown in Figure 5, the constellation of net-

work clusters has been quite stable, with seven

or eight groupings consisting of relatively con-

sistent leading members. The resulting weekly

network snapshots reveal a polarized network

structure that reflects current divisions in Amer-

ican politics. Interestingly, the political right dis-

plays a remarkable level of stability while the left

has exhibited more dynamic cluster with the

larger moderate left gradually incorporating a

smaller progressive group over time. A common

characteristic of these network communities is

the presence of dense clusters of users around

popular politicians and media figures with rela-

tively short communication pathways that

enable the rapid transmission of information.

Of particular interest are patterns of misinfor-

mation about the nature, transmission, effects,

and protective actions associated with COVID-19

within each of the more stable network clusters.

Preliminary analysis of the network structure

and content of the most prominent accounts

and tweets has found a number of coherent mis-

information narratives, including conspiracy

theories, cures, and other statements about

COVID-19 that are based on verifiably false

claims, that have spread throughout the social

media landscape. These narratives include

claims that COVID-19 is the product of a shad-

owy conspiracy of powerful individuals, the

virus originated as a bioweapon, COVID-19 is no

worse than seasonal flu, and hydroxychloro-

quine is an effective cure. Among the false narra-

tives identified, a disproportionate number of

these misleading claims regularly have appeared

within the conservative right community on

social media, but it remains to be seen if this

flow of misinformation will shift.

Starting inmid-March, a rolling nationwide sur-

vey, with weekly representative subsamples, was

implemented to track the patterns of awareness of

and belief about the COVID-19 misinformation

identified in the Twitter social media collection.

The survey permits assessment of the ways in

which social media misinformation (and efforts to

counter that misinformation) affect evolving pub-

lic concern about and response to the pandemic.

A key interest is in understanding changes over

time in public trust for experts and individual will-

ingness to engage in protective actions.

Also in March, Governor Kevin Stitt of Okla-

homa asked the OU NIRR, as part of a team of

modelers, to provide regular updates on the pro-

jected spread of COVID-19 related hospitaliza-

tions and ICU demand within Oklahoma. Early in

the pandemic, models were showing wide dis-

crepancies in these estimates,9 with underlying

Figure 5. Depicts the networks of Twitter users posting about COVID-19 over the period of February 27th

through April 16th, 2020. Clusters were identified using the Louvain community detection algorithm.
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uncertainties clouding urgent policy decisions.

The NIRR proposed and implemented a model-

ing ensemble approach, utilizing a range of

nationally recognized models to provide the

Governor, the State Epidemiologist, and cabinet

with the range of regularly updated projections

for the state. This effort extended through May

2020, when the pandemic (appeared to have)

peaked in Oklahoma. These ensemble models

are being integrated into PanViz 2.0.

PANVIZ 2.0 AND MOBILITY DATA
One question implied by the current work is:

To answer this question, in addition to our work

in surveying, social media data collection, and

smart app user-provided data, we and our collabo-

rators repurposed existing cyberinfrastructures

to analyze the risk of future epidemics in crowded

locations by using real-time webcam videos and

data provided by location-based services (LBS)

(NSF RAPID grant 2027524). The proposed

solution incorporates pedestrian

dynamics to assess if individuals are

complying with social distancing.

We believe this research will

yield actionable data that can be

incorporated into PanViz 2.0 to

asses compliance with NPIs, since

LBS data can be used to identify

crowded locations with a spatial

resolution in the tens of meters, and video data

can assess how individuals congregate within

and move through large public spaces.

Froma decision-making perspective, there are

several benefits of this data. The first is the ability

to identify potential transmission hotspots on a

very-fine grain level, allowing a decision-maker to

assess if a particular store or nursing home is at

risk of becoming a hotspot. Second, the collec-

tion and analysis of LBS and video data can be

used in contract tracing applications. Looking

toward the future, this information can be used

to redesign public spaces for pandemic safety.

These data sources, along with social media

data and user-provided app data, have been

integrated with the PanViz 2.0 architecture to

provide a decision-maker with a series of scal-

ing intervention options. A decision-maker can

now suggest a series of behavioral “nudges” be

issued to individuals in high-risk areas to

remind them to comply with public health prac-

tices or simply alter them of the risk. On a

regional level, the decision-maker could assess

public perception of and compliance with

regional level public health measures. Finally, at

a national level, a decision-maker can surmise

how the public at large views public health

measures and asses the types of locations at

risk of becoming a hotspot.

PANVIZ 2.0 AND CO-ADVISOR
Gathering detailed information at the individ-

ual level and providing individualized communi-

cations to help ordinary people respond are also

goals of our Center. Part of our team, based in

OU’s School of Computer Science, has proto-

typed the Co-Advisor application for this pur-

pose. Co-Advisor is a smart-device app designed

to ingest data on the activities of users and

others, as well as individual health data, in order

to provide users with current and

predicted risk assessments based

on their current and planned

behaviors. The app is designed to

communicate risk assessments in

a clear, simple, and timely man-

ner. Co-Advisor ingests data in

three categories: user activities,

user health data, and activities of

others. The types of data collected about individ-

ual activities include mobility, records of per-

sonal behaviors such as mask wearing, and social

behaviors such as work environment. An individ-

ual user can supply records of their symptoms

and/or the system can automatically detect

them. Finally, Co-Advisor ingests data about the

behaviors of others that users have come in con-

tact with, such as whether a visited location was

crowded. These data are collected by sensors

including Bluetooth and GPS tracking, and user

inputs.10 One of the primary functions of Co-Advi-

sor is to convert the collected data into actionable

information. An example of this can be viewed as a

user story. If a user wants to engage in contract

tracing, the user enables location sharing (while

preserving privacy and security11) to help assess

where they had been during the past 20 days. This

information allows Co-Advisor to determine if they

How does a decision-

maker assess if

individuals are

complying with public

health measures such

as social distancing?
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had come in contactwith others whowere likely to

have COVID-19. Assuming the user had been in

substantial contact with an infected individual, Co-

Advisor informs them of that risk. Effective risk

communication is clear, simple, timely, and incor-

porates awareness of the cultural context of the

user. Co-Advisor uses interactive communication

strategies in lay language with supporting evi-

dence to make biomedical prevention messages

credible in affected communities. This risk is com-

municated via alerts triggered by public or private

data; nudges, which encourage individuals to

change their behavior and can be used as just-in-

time adaptive interventions;12 and detailed recom-

mendations based on user behavior.

PLAN FOR A CENTER CIPH-MAD
As mentioned in the introduction, we plan to

form a Southwestern U.S. collaboration to enable

more effective surveillance, planning, mitigation,

and response to public health emergencies. To

state, we have initiated a Center for Integrated

Public Health Monitoring, Analysis and Deci-

sion-making (CIPH-MAD). This Center will pursue

opportunities for generating and harnessing new

data sources to improve planning, detection,

response, communication, and management for

pandemics like COVID-19 (see Figure 6). Cur-

rently, there is no deployed system that integra-

tes these data and capabilities into a unified

decision-making system for hospital and govern-

ment decision-makers and includes mitigation

strategy planning. While large, population dense

areas see more infectious disease cases, they

also have greater resources. Oklahoma’s budget

per capita is only 52.6% of New York’s. Accurate

disease projections are potentially “mission crit-

ical” for Oklahoma and other Southwestern

states given this relative shortfall of resources.

Moreover, Oklahoma and many other states lack

real-time electronic syndromic surveillance to

provide the base data needed for accurate situa-

tional surveillance, virus spread status, and mea-

surement of mitigation actions.

Included in the Center will be development

and deployment of a “Co-Advisor” app that

would build on the functionality the Google/

Apple social-distancing/contact-tracing capabili-

ties to provide user advice and information

while providing anonymized input to CIPH-

MAD’s integrated public health planning system,

built upon PanViz 2.0. These data, as well as the

social media and survey data described above,

will be utilized to expand the capability and func-

tionality of existing pandemic models (like

Figure 6. Configuration of CIPH-MAD, which facilitates public health emergency planning and response

through integrated data sources (monitoring), advanced modeling (analysis), and data visualization and risk

alert communications (decision-making).
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already developed models in PanViz). Further-

more, we will create the PanViz 2.0 decision sup-

port framework that is sensitive to the

community-specific characteristics and/or spe-

cialized subpopulations. We will accomplish this

in part through machine learning to create data-

sets amenable to statistical analyses for forecast-

ing, incorporating features such as population

density, income dispersion, age distribution,

mobility data, and unique factors such as Native

American population and presence of higher

education facilities. Small area estimation techni-

ques including missing data imputation for sur-

vey data and Bayesian estimation will enhance

the informational value of datasets and improve

forecasting accuracy. The overall focus is on

capturing the synergies across the computing,

public health and social sciences to build a data-

driven, integrated healthcare modeling system

to both act as a sentry for emerging pandemics

and as a tool for managing them.

In the coming months, we will expand

CIPH-MAD to include researchers from Arizona

State University and the University of Texas,

Austin. This will expand the reach of the cen-

ter to cover the South Western portion of the

United States.

CONCLUSION
Making timely, effective, science-based deci-

sions to mitigate the impact of a pandemic is a

very difficult and highly complex task. As recent

news events have shown, the pressures facing

public health officials are immense and life-alter-

ing for thousands of individuals. Even a decision

as seemingly small as when to announce a partic-

ular policy can save the lives of tens of thou-

sands of individuals.

However, making these complicated deci-

sions without computational support can be

very difficult. In this article, we presented the ini-

tial results of a trans-disciplinary collaboration

between researchers, healthcare practitioners,

and community health partners in the South-

western U.S. to help enable improved manage-

ment, response, and recovery to our current

pandemic and for future health emergencies

through the development of an integrated data

dashboard. Our aim is to provide decision-

makers with a tool to help them synthesize and

visualize a wide variety of data types—ranging

from hospital capacity to Facebook posts—to

help them evaluate the outcomes of various

decisions to further their goal of making life-sav-

ing choices. Given that the data landscape sur-

rounding COVID-19 are evolving so fast and the

little understood nature of the disease, we

emphasize that work will continue for quite

some time. Our work to date does facilitate an

understanding of the consequences of various

interventions. Furthermore, our work is immi-

nently applicable to future pandemic and public

health emergencies by providing a framework to

integrate and synthesize multiple disparate data

sources.
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Abstract—Thisarticle presents thedesign andoptimization of theGPUkernels for

numerical integration, as it is applied in the standard form infinite-elementcodes. The

optimization processemploysautotuning,with themainemphasis on theplacementof

variables in the sharedmemoryor registers.OpenCLand thefirst order finite-element

method (FEM) approximation are selected for codedesign, but the techniques arealso

applicable to theCUDAprogrammingmodel andother typesof finite-elementdiscretizations

(includingdiscontinuousGalerkinand isogeometric). Theautotuningoptimization is

performed for four example graphicsprocessors and theobtained results are discussed.

& THE EFFECTIVE EXPLOITATION of the computa-

tional power of graphics processors (GPUs)

requires efforts of both theoretical and practical

matters. Theoretical performance modeling can

indicate the most important factors influencing

the execution characteristics for considered

algorithms.1;2 The detailed quantitative results for

particular GPU hardware can still be difficult to

obtain and use in practice. Moreover, the results

for one architecture are usually not applicable to

the others, even for similar processors, e.g., form-

ing a sequenceof generations for a specific family.3

The autotuning techniques that form an exper-

imental extension of theoretical models and have

been applied with success for CPUs since the

1990s,4 are becoming more and more popular for

the GPU architectures.5 The specific characteris-

tics of the GPUs and their most popular program-

ming models—CUDA and OpenCL—offer some

fundamental optimization parameters, such as

the number of threads, their organization into

global and local index spaces (using the notion of

threadblocks or workgroups), as well as run time

and compiler optimization options, including the

number of registers employed or the level of loop

unrolling.6
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In this article, we consider several other

options for GPU autotuning that requiremore sub-

stantial intrusion into the optimized code. The

algorithm that we use for our study is the finite-

element numerical integration, an important algo-

rithm used in almost all the FEM simulation codes.

It is used for creation of a system of linear equa-

tions, the solution of which gives degrees of free-

dom for the finite-element approximations. The

work presented in this paper is a continuation of

our investigations on execution of finite-element

core calculations on modern hardware platforms

presented, e.g., as in paper by P»aszewski et al. 7;8

ALGORITHM OF FINITE-ELEMENT
NUMERICAL INTEGRATION

The goal of the finite-element numerical inte-

gration algorithm is to create, for each finite ele-

ment, a local matrix AAe (element stiffness matrix)

that is further used in calculations in a manner

specific to a particular solution strategy (to sim-

plify and clarify the analysis, we neglect in this

paper the creation of the vector of the right hand

side of the system).

We omit the details of the context in which

the numerical integration algorithm is used

within finite-element calculations. In particular,

we do not discuss the problem of assembling

the element stiffness matrices into the global

system matrix9 (allowing for the application of

the presented optimizations also for “matrix

free” methods10), as well as the distributed mem-

ory parallelization that can be obtained in a stan-

dard way by domain decomposition11 (in that

respect, numerical integration is an embarrass-

ingly parallel algorithm).

For our study of GPU kernel optimization, we

neglect also the problem of transferring data

between host (CPU) memory and GPUmemory.12

We assume that the input data are present in the

main GPUmemory and that the results of calcula-

tions are written to the GPUmemory as well.

The limiting assumptions of our approach

imply that the final decision about the feasibility

of using GPUs for FEM calculations will depend

upon the particular problem solved and approxi-

mation techniques used. For example, since PCIe

bus, the most popular current hardware technol-

ogy for connecting GPUs with host systems, is

several times slower than host and GPU memory,

the cost of transferring data from host memory

to GPU memory has to be amortized due to par-

ticular features of problem and approximation

(e.g., using the same data for different time steps

or nonlinear iterations). For large scale problems,

the situation gets even more complex, with the

distribution of data over different computational

nodes and the variety of available communica-

tion patterns for data exchange. In view of all

these possible complexities, our approach is to

present a strategy for achieving optimal solution

for a particular phase of computations that can

be employed in more comprehensive simulation

scenarios.

Algorithm 1. A generic algorithm for finite-
element numerical integration for a sequence
of NE elements of the same type and order of
approximation

1: for e ¼ 1 TONE do

2: read problem dependent parameters
specific to the element

3: read geometry data for the element
4: initialize element stiffness matrix AAe

5: for iQ ¼ 1 TONQ do

6: compute parameters necessary to perform
the change of variables from the reference
element to the real element (Jacobian
terms)

7: calculate the corresponding discrete
counterpart of the volume element for
integration, vol½iQ�

8: for iS ¼ 1 TO NS do

9: using Jacobian terms calculate the val-
ues of global (real) derivatives of shape
functions and store in array ff½iQ�

10: end for

11: based on the problem dependent data com-
puteweak form related coefficients cc½iQ�

12: for iS ¼ 1 TONS do

13: for jS ¼ 1 TO NS do

14: for iD ¼ 0 TOND do

15: for jD ¼ 0 TO ND do

16: AAe½iS �½jS �þ ¼ vol½iQ� ×
cc½iD�½jD�½iQ� � ff½iD�½iS �½iQ� � ff½jD�½jS �½iQ�

17: end for

18: end for

19: end for

20: end for

21: end for

22: store in memory AAe as the output of the
procedure

23: end for

Finite Elements on GPUs
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Algorithm 1 presents the version of the numer-

ical integration algorithm that we analyze in this

paper. The algorithm runs in a loop over NE ele-

ments, with NE assumed to be sufficiently large,

to justify the use of accelerators for a given prob-

lem. The input for calculating a single element

matrix is formed by a set of data defining the

geometry of the element and a set of data used to

compute the particular problem dependent coeffi-

cients, stored in the array cc, specific to a given

partial differential equation (PDE).

In its essence, the algorithm (apart from the

separate calculations of Jacobian terms and real

derivatives of shape functions, both related to the

change of variables in the integration) is a summa-

tion for a set of output matrix entries, with two

matrices used as input data. The size NS of the

local output matrix AAe is determined by the num-

ber of degrees of freedom, which, for scalar prob-

lems considered in the current paper, is equal to

the number of shape functions that are used to

construct finite-element solutions. Each entry in

the local matrix is calculated using the values of

shape functions and their derivatives, stored in

arrays ff. The range of indexes iD and jD in ff, from

0 toND, is related to the fact that the arrays store

the functions and their ND partial derivatives,

with ND being the number of space dimensions

of the problem (assumed to be equal three in the

rest of the paper).

Each entry in the element matrix corre-

sponds to a pair of shape functions, hence the

double loop over shape functions, with indexes

iS and jS . Each entry is obtained using quadra-

tures, hence the outermost loop over the inte-

gration points (with index iQ). The integration

employs the change of variables (using Jacobian

terms related to the mapping from the real to

the reference element), hence the additional cal-

culations of real derivatives of shape functions

(at lines 8–10 of Algorithm 1) that use the geo-

metric data for the element.

The algorithm can have different alternative

variants, depending on the choice of finite-ele-

ment approximations (e.g., high order,13 discon-

tinuous Galerkin,14 etc.) and the problems solved.

The version presented in Algorithm 1 is suitable

for low-order approximations, especially for

nonlinear problems, where the step of computing

problem dependent coefficients has to be

performed for each integration point (inducing

the order of loops, where the loop over integra-

tion points is outside the loops over shape

functions).

To further concentrate on the issue of perfor-

mance optimization, we consider only two types

of three-dimensional (3-D) finite elements (tetra-

hedral and prismatic), both with first order

approximations. For these choices the main

parameters of the algorithm that decide on the

computational resource usage (the size of arrays

and the number of operations), are the following:

� NQ – the number of integration points in the

selected quadrature (tetrahedra - 4, prisms - 6);
� NS – the number of element shape functions

(tetrahedra - 4, prisms - 6).

As can be seen in Algorithm 1, the actual calcu-

lations depend on the form of coefficient arrays cc

that can be sparse, thus, promoting some impor-

tant optimizations. Usually the two innermost

loops of Algorithm 1 (indexes iD and jD) aremanu-

ally unrolled, with only the operations corre-

sponding to nonzero terms in cc performed.

We follow this approach while considering

two model problems, with different forms of the

coefficient array cc. The first problem is the stan-

dard Poisson problem, with the Laplacian on the

left hand side and some functions on the right

hand side (specified by discrete values at inte-

gration points in our simulations). For this case,

the coefficient array cc is almost empty, with only

three 1s on the main diagonal. The second case,

termed as “conv–diff” problem, represents the

whole group of problems with possibly complex

nonlinear coefficient matrices, for which we skip

the part of computations related to the particu-

lar problem solved (line 11 in Algorithm 1). By

doing this, we obtain a more generic case, with

the full (4� 4) coefficient array cc passed as input

to the algorithm (we assume the array to be dif-

ferent for each element).

PROGRAMMING MODEL AND
PARALLELIZATION OF THE
ALGORITHM

In our approach, we separate two issues

related to performance. First, we consider the

parallelization of computations, related to the
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hardware environment and programming model.

As the main subject of our investigations, we

describe the optimization of the parallelized

GPU code using autotuning.

The general hardware setting for finite-ele-

ment computations using GPUs can be a single

GPU, a set of GPUs, as well as a distributed

memory machine, with each node equipped

with one or several GPUs. In each of these

cases the calculations for a single GPU are per-

formed in one or several batches of elements,

each of which is processed using Algorithm 1

(a single batch can be related to domain decom-

position used in distributed memory calculations,

the existence of elements with different types and

orders of approximation in the finite-element mesh

or the coloring technique used for avoiding data

race in the assembly stage of finite-element

computations8).

Parallelization of Finite-Element Numerical

Integration

The six loops for computing the entries ofAAe in

Algorithm 1 present many options for paralleliza-

tion. As we pointed out before, the two innermost

loops are usually manually unrolled. Moreover,

the loop over integration points is also usually

executed by a single thread, due to the summation

performed thatwould require some formof reduc-

tion if parallelized. The reduction overhead is

absent for the loops over elements and shape

functions and we briefly recall the main options

for their parallelization.

One-Element-One-Thread Strategy The

most obvious and always employed option for

parallelization of finite-element numerical inte-

gration is to parallelize the outermost loop over

elements. When this becomes the only loop that

is parallelized, we get the strategy that we call

one-element-one-thread. A single thread that is

assigned to a given element performs all the cal-

culations associated with the element. The

thread can process one or several elements in a

loop, in which case it executes Algorithm 1 with

NE being the number of elements assigned to it.

One-Element-Several-Threads Strategy

The parallelization of any of the loops over

shape functions (or both of them) can be cast

into the data decomposition paradigm. The

data being decomposed is AAe, and in this

approach each thread operates on a set of

entries of AAe. One may consider many different

options in this approach, such as assigning to a

given thread a small set of entries, a row or a

column of AAe, or a rectangular block of entries.8

The limiting case is to assign a single entry to a

single thread.

The drawback of the naive implementation of

this approach is that sequential regions appear

outside the loops over shape functions. To par-

tially remedy this, one can consider separately

the parallelization of Jacobian terms calculations

(the loop over shape functions for computing

their real derivatives can also be parallelized,

e.g., by combining it in some way with the loops

for calculating AAe entries). The Jacobian terms

can be computed in parallel for all integration

points, which requires additional storage for

intermediate results. Moreover, the optimal

decomposition of calculations among threads

may be different than that for calculating the

entries of AAe.15

One-Element-Two-Kernels Strategy When

fast (shared) memory resources appear too small

to accommodate the intermediate data computed

for all integration points, the global memory can

be used for that purpose. The algorithm has to be

reorganized, leading in practice to two separate

kernels. In the first kernel threads calculate in par-

allel the necessary terms for all integration points

and a set of elements (the terms may include not

only Jacobian terms, but also some intermediate

values related to the calculation of the problem

dependent coefficients cc) and stores them in the

global memory. Then, the second kernel performs

actual calculations of AAe entries for the elements,

READING the input data from the global memory, but

that time only for a single integration point at a

time16 (instead of READING the geometry and prob-

lem dependent data for an element, the precom-

puted data for its integration points are READ).

ALGORITHM REQUIREMENTS AND
GPU HARDWARE RESOURCES

The most arithmetically intensive part of Algo-

rithm 1 is the final evaluation of contributions to

local stiffness matrices with three arrays involved:

Finite Elements on GPUs
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the resulting array AAe, the coefficients cc½iQ� at the
current integration point (that, in principle, can be

different at every point in the element), and the

values of shape functions and their derivatives

ff½iQ� at the current integration point (due to the

definition of shape functions that uses the notion

of the reference element, the values at integration

points are the same for all considered elements,

but the values of their derivatives are different for

each element and, for all element types except sim-

plexes with linear approximation, are different for

each integration point).

We present the sizes of the arrays appearing

in the final calculations of the entries of AAe in

Table 1, for the four test cases that we consider

in our computational experiments. The compu-

tational cost associated with different versions

of the algorithm can only be estimated, due to

possible compiler optimizations associated with

such features as

� symmetry of AAe;
� constant derivatives of shape functions (the

same at all integration points) for linear ele-

ments (triangles in 2-D, tetrahedra in 3-D);
� sparsity of coefficient arrays cc:

For the first two features, we do not pass the

relevant information directly to the compiler

(nor we design the special data structures for

such cases), but we inspect the assembler code

created to ensure that the suitable optimizations

(e.g., loop unrolling and common subexpression

elimination) are performed by the compiler.

The numbers in Table 1 were verified as the

minimal for produced assembler versions of the

kernels used in our study. The obvious conclusion

from the numbers is that the versions of the algo-

rithm differ in their arithmetic intensity (the num-

ber of arithmetic operations per single dynamic

random accessmemory (DRAM)memory access).

Hence, e.g., the computations for the Poisson

problem on tetrahedral elements are much more

likely to have their performance bound by GPU

memory throughput, whereas the calculations for

the conv–diff problem on prismatic elements may

be bound in their performance by the GPU multi-

processors computing capabilities and the shared

memory throughput.

Resources of Graphics Processors

The fastest execution of Algorithm 1 can be

achieved when all involved arrays are stored in

registers. As an alternative, some of the data can

be stored in the shared memory. The optimal

choice for the placement of the variables depends

on the available hardware resources and the

scheduling of computations (in particular the

number of threads executed simultaneously on a

single multiprocessor). We present in Table 2 the

Table 1. Number of Nonzero entries in the arrays and the computational cost of numerical integration algorithm for first

order approximation, two popular types of finite elements: tetrahedral (tetra) and prismatic (prism) and two selected

model problems: with Laplace operator (Poisson) andwith all convection–diffusion–reaction terms (Conv–Diff).

Type of problem

Poisson Conv–diff

Type of element

Tetra Prism Tetra Prism

Data for single integration point
PDE coefficients cc 0 0 16 16
Shape functions and derivatives ff 16 24 16 24
Total (including AAe) 32 60 48 76

Data for all integration points
PDE coefficients cc 0 0 16 16
Shape functions and derivatives ff 28 144 28 144
Total (including AAe ) 44 180 64 200

Computational cost
Estimated number of operations 290 2700 986 4806
Minimal number of main memory accesses 36 66 52 80

Estimated arithmetic intensity 8 41 19 60
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characteristics of four graphics processors for

whichwe test our implementations.

The first three represent three generations of

NVIDIA processors targeting high performance

computing (HPC) domain. The particular

graphics cards, processors, and architectures

used in our study are the following: M2075 card

with GF100 Fermi GPU, K20m with GK110 Kepler

GPU, and P100 (12 GB memory version) with

GP100 Pascal GPU. The fourth GPU is a standard

consumer AMD Radeon graphics card R9 280X,

with Tahiti XTL processor (Graphics CoreNext,

GCN, architecture).

The selection of characteristics in Table 2

concentrates on computing capabilities of pro-

cessors (including the number of single instruc-

tion multiple data (SIMD) lanes for single and

double precision floating point operations) and

the sizes of memory pools—register files and the

shared memory.

Additionally, the sizes of memory for a single

SIMD lane are calculated in Table 2. This can be

used to estimate how much data a single thread

can store in the memory, taking into account the

fine grained multithreading employed by the

GPUs that requires several threads to run concur-

rently per SIMD lane, in order to hide latencies

associated with memory accesses and pipelined

execution of instructions.

The table lists also the machine balance of

the considered GPUs,17 defined as the number of

floating point operations per single DRAM mem-

ory access (arithmetic intensity of the executed

algorithm) required in order to reach simulta-

neously the peak computational performance

and the DRAM memory throughput. These data

can be compared with arithmetic intensities of

different variants of numerical integration pre-

sented in Table 1.

OPTIMIZATION
For the purpose of investigating implementa-

tion optimization, we consider the first paralleliza-

tion strategy—one-element-one-thread. A single

Table 2. Characteristics of GPUs used in computational experiments.

GPU

Architecture Fermi Kepler Pascal GCN

Graphics (accelerator) card M2075 K20m P100 R9 280X
Processor GF100 GK110 GP100 Tahiti XTL
Number of multiprocessors 14 13 56 32

Global memory size [GB] � 5.4 � 4.8 12 or 16y 3

Multiprocessor characteristics
Number of SP/DP SIMD lanes 32/16 192/64 64/32 64/16
Number of 32 bit registers 32 768 65 536 65 536 65 536

Shared memory (SM) size [KB] 16 or 48 16 or 48 64 64

Memory resources per single SIMD lane
Number of SP/DP registers 1024/1024 341/512 1024/1024 1024/2048

Number of SP/DP entries in SM 384/384z 64/96z 256/256 256/512

Performance characteristics [TFlops]
Peak DP performance 0.515 1.17 4.7 0.87
Benchmark (DGEMM) (% of peak) 0.36 (70%) 1.10 (94%) 3.9 (83%) 0.65 (75%)
Peak SP performance 1.03 3.52 9.3 3.48

Benchmark (SGEMM) (% of peak) 0.51 (50%) 2.61 (74%) 7.8 (84%) 1.7 (49%)

Memory throughput [GB/s]
Peak memory bandwidth 150 208 549y 288

Benchmark STREAM (% of peak) 105 (70%) 144 (70%) 380 (70%)y 219 (76%)

Machine balance
Peak (SP/DP) 28/28 68/45 68/68y 48/24

Benchmark (SP/DP) 20/28 73/62 83/83y 31/24

y For the GP100 card there are two versions: the first with 12 GB of memory and 549 GB/s bandwidth and the second with
16 GB and 732 GB/s, we present performance characteristics only for the version with 12 GB of memory and 549 GB/s
bandwidth that we used in our experiments.
z In maximal (48 kB) shared memory configuration.
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thread performs Algorithm 1, operating on whole

arrays associated with each assigned element.

This strategy is most suitable for h-type finite-ele-

mentmethod with first order approximation. How-

ever, the optimization process that we employ,

together with all particular techniques and

options, can be used for other types of FEM

approximation, including p-FEM and hp-FEM. In

order to adapt the process to obtain optimal ker-

nels for different approximation types, possibly

other strategies (e.g., one-element-several-threads)

have to be applied with additional options consid-

ered (e.g., the choice of parameters for mapping

the space of threads and thread workgroups onto

the set of elements).

In our one-element-one-thread approach, we

assume a single dimensional space of threads, with

the minimal recommended size of workgroups for

the considered GPU architectures (64 threads).

This restriction results from the limited size of

shared memory that is used for storing the arrays

associated with the whole workgroup of threads.

Moreover, we employminimal synchronisation

necessary to ensure the correct kernel execution,

design the kernels without the use of constant and

texture memories and leave to the compiler final

classical code optimization (including loop unroll-

ing). We concentrate on the issues related to the

placement of variables in different memory pools

(shared memory, registers) and the organization

of memory accesses. (In our experiments, we

investigated also the padding of arrays in shared

memory and found that it does not impact the

performance, hencewe omit this aspect.)

DRAM Access Options and the Use

of Registers and Shared Memory

The flow of calculations for a single element,

specified by Algorithm 1, can be divided into sev-

eral phases. First, input data are READ from the

main DRAM memory, then calculations are per-

formed and, finally, the calculated output is

stored back in the main memory.

We assume that the input data (geometry and

PDE related) for all the elements is prepared in a

single array, with the entries for a single element

stored in the consecutive locations of the global

DRAMmemory. The recommendedway of access-

ing DRAMmemory18 requires the threadsworking

in lock-step (forming warps and wavefronts) to

refer to memory cells in a way that allow for coa-

lescedmemory accesses.

In our case this induces the strategy, where a

group of threads READS data for a sequence of ele-

ments, placing it in shared memory. Then, each

thread operates on data corresponding to its

assigned element, rewriting the data to registers,

when required.

We also consider an alternative strategy where

threads READ data on their respective elements

directly from DRAMmemory to registers, omitting

the step of rewriting to the shared memory. We

want to check whether this strategy that goes

against standard practices can be better for cer-

tain architectures (despite the fact that the use of

registers guarantees the best performance, READING

input data to the shared memory can have addi-

tional negative impact on the performance of ker-

nel execution, by diminishing the number of

threads executed concurrently on a multiproces-

sor, due to limited sharedmemory resources).

Comparison of the algorithm requirements

from Table 1 with the processor’s resources in

Table 2 indicates that some of, or even all, the

arrays used in final calculations of AAe can be

stored in the registers. We consider additionally

the possibilities that one of the arrays is stored

in the shared memory.

Theoretical analysis can indicate, for each

considered case, the number of accesses to the

arrays in different memory pools and allow for

creating performance models of execution. How-

ever, the number of accesses to different levels

of memory hierarchy during kernel execution

will eventually depend not only on the source

code, but also on compiler optimizations and

the particular organization of hardware (e.g., its

ability to coalesce memory accesses, the strat-

egy of using caches or handling register spilling).

Design of Kernels for Autotuning

In order tomanage the optimization of numeri-

cal integration kernels for different problems and

GPUs, we design, for each finite-element type, a

single, portable, parametrized OpenCL kernel19

with several alternative options selected using a

set of directives for conditional compilation.

Following the flow of computations in

Algorithm 1, the first directive selects the

coalesced or noncoalesced READING of the data.
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For noncoalesced reading, each thread reads

element input data into registers. There are

two sets of the input data, the geometry data,

and the problem dependent data. If any of

these sets is destined to be stored in the

shared memory, due to the selection done by

other directives, the associated data are READ

in a coalesced way.

For the options of storing arrays in the

shared memory, there is a separate compiler

directive for each array, i.e., the final matrix AAe,

the coefficients cc and the values of shape func-

tions and their derivatives ff, all of which appear

in final calculations of AAe entries, as well as for

the array that stores geometric data (the coordi-

nates of element’s vertices in our case).

In order to design a single kernel for all the

variants, the shared memory is used only for a

generic, “workspace,” variable in the code.

Hence, the code for each particular variant is dif-

ferent with different variables used. The selection

of the particular version to execute done by the

conditional compilation directives takes care not

only of using the proper arrays, but also of allo-

cating the optimal size for arrays (this concerns

especially the workspace in shared memory that

in different versions of the executed code stores

different variables from the algorithm). The

choice for each particular option concerns sev-

eral places in the source code, with many parts

affected by several interfering options.

There is one additional option with the possi-

ble impact on execution performance.16 This

option is the fusion of the loop for computing the

real derivatives of shape functions at an integra-

tion point (lines 8–10 of Algorithm 1) with the

loops over shape functions (lines 12 and 13 in

Algorithm 1). When applied, the derivatives are

not computed for all shape functions and stored

in some array (that uses some space in shared

memory or registers) but calculated on the fly,

only for the shape functions indicated by the val-

ues of indexes iD and jD. This option saves stor-

age, but requires repeated calculations of real

derivatives in each iteration of the inner loop over

shape functions. The overhead of additional com-

putations can be counterbalanced by performance

increase if additional storage leads to register

spilling or increased shared memory usage,

accompanied by lower multiprocessor occupancy.

The final option, in the flow of calculations,

concerns the WRITING of the computed AAe matrix

entries to global DRAM memory. In the noncoal-

esced version, each thread WRITES the entries for

its element to subsequent memory locations, so

the threads executing in lock-step, forming a

wavefront/warp, WRITE to memory locations with

the stride equal to the size ofAAe. In the coalesced

version, the threads from a single wavefront/

warp WRITE to subsequent memory locations, but

the entries of AAe for a single element are stored

with the stride equal to the number of threads in

the workgroup. This requires special adaptation

of other kernels performing subsequent steps of

a particular FEM solution procedure (e.g., ele-

ment-by-element matrix-vector product or the

assembly into the global stiffness matrix) that

have to know the layout of output data from

numerical integration. The use of conditional

compilation in the case of coalesced WRITING

option is relatively straightforward, since this

option interfere only with the option of possibly

storingAAe in the sharedmemory or registers.

The final designed kernel combines all optional

code variants in one source file. The flowof calcula-

tions is preserved, with the interlaced parts of the

code for different execution options. The condi-

tional compilation selects the indicated lines for

each combination of directives, with a single

selected block having usually from one to several

lines. The number of selected lines from the source

code for each particular combination of directive

options does not exceed one hundred, the kernel

that includes all the variants has more than one

thousand lines,withmore thanonehundredblocks

associatedwith different combinations of options.

As a result of our kernel design we get a set of

seven options that can be specified in order to

optimize the performance of Algorithm 1. For

each particular selection of variants we encode

the set of its options using a symbol composed

of 0s and 1s, with a single position associated

with particular optimization option and 0 for the

optimization switched OFF and 1 for switched ON.

The subsequent positions of 0s and 1s in the

symbols are the following:

1. use coalesced READING of input data to the

shared memory (instead of uncoalesced READ-

ING to register arrays);
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2. use coalesced WRITING of output data;

3. compute all shape functions and their deriva-

tives before entering the two innermost loops

of the algorithm;

4. use shared memory for problem dependent

data (PDE coefficients);

5. use shared memory for geometry data (the

coordinates of element vertices);

6. use shared memory for the values of shape

functions and their derivatives at integration

points;

7. use shared memory for the resulting local,

element arrays.

Since the last four options are mutually exclu-

sive and we consider also the case without the

use of shared memory during final calculations,

with all the variables stored in registers, we get

finally 23 � 5 ¼ 40 optimization variants.

COMPUTATIONAL EXPERIMENTS
We tested our OpenCL implementation of

numerical integration kernels, with the described

performance tuning, for the four graphics (accel-

erator) cards presented in Table 2. We used only

double precision calculations as more versatile

(we discuss the issue of precision for finite-ele-

ment numerical integration e.g., in.12;16;19) For all

considered GPUs, we used 64-bit Linux (Centos 7)

with GCC version 4.8.5 (kernel 2.6.32 with CUDA

8.0, except for the Pascal GPU where we used ker-

nel 3.10.0 and CUDA 10.1) .

We present (see Figures 1–4), for each problem

and each finite-element type, the plots with the

execution times for numerical integration over a

single finite element (in nanoseconds), for each

GPU and each combination of tuning options. In

each figure, the x-axis shows the encoded tuning

options, whereas the four curves correspond to

different GPU architectures. The scale on the

y-axis is logarithmic, due to big differences in exe-

cution times for different processors.

The organization of data on x-axis is such

that the results for the five options concerning

the placement of data in the shared memory

(indicated by the last four digits in the encoding

symbols) form the five subsequent sets of eight

consecutive results, with all the combinations

related to the first three options (the first three

digits in the encoding symbols) within each set.

The plots give information on hardware–soft-

ware interactions for numerical integration var-

iants and different GPUs. For the Poisson problem

and tetrahedral elements, it can be seen that the

most important factor for all the GPUs is the way

of accessingmemory. For NVIDIA processors coa-

lesced WRITING decides on the performance. For

Fermi and Pascal architectures this is the only fac-

tor, for Kepler there is additional requirement to

store the output matrix in registers, not in the

shared memory. For AMD R9 processor the pic-

ture is less clear, but the best results are obtained

for storing PDE coefficients or shape function

arrays in the shared memory and using coalesced

READING and WRITING.

For the Poisson problem and prismatic ele-

ments the calculations play more important role

than for tetrahedral elements. Hence, the use of

shared memory, instead of registers, for storing

the output element matrix usually leads to slower

Figure 1. Execution time for numerical integration over a single

finite element in the Poisson test problem, for different optimization

options, tetrahedral finite elements, and the four selectedGPUs.

Figure 2. Execution time for numerical integration over a single

finite element in the Poisson test problem, for different optimization

options, prismatic finite elements, and the four selectedGPUs.
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execution. The only exception is the Fermi archi-

tecture, for which storing the large output matrix

in the shared memory is the only way to signifi-

cantly reduce register spilling that slows down

the execution. Once again, to achieve the best

performance, coalesced READING and WRITING should

be employed for all the architectures, but now

there are other factors that has to be taken into

account. These factors are different for each

architecture and are reflected by different shapes

of execution profiles. Themost random is the pro-

file for AMD R9 processor, whereas Pascal GP100

shows that its massive computational resources

are sufficient to make coalesced WRITING the only

factor significantly influencing the performance.

The same profile for the Pascal architecture

appears also for the conv–diff problem on tetrahe-

dral elements. For this problem, however, the

other architectures show more interesting pro-

files. Kepler GPU requires both, coalesced READING

and WRITING, but without using shared memory for

the output stiffness matrix. On the contrary, the

Fermi processor requires storing the output

matrix in the shared memory (and computing all

global derivatives of shape functions at once), due

to its problems with providing sufficient number

of registers. The best options for Fermi belong to

the worst options for AMDR9. For this GPU, one of

the best results is achieved for not using the

shared memory at all—one can see here the influ-

enceof the large number of double precision regis-

ters for a single SIMD lane for this architecture.

The profile for R9 GPU and conv–diff problem

on prismatic elements shows how dramatically the

performance of the processor can decrease for ker-

nels with larger memory requirements. The R9

Tahiti GPU is faster than the Kepler GPU for the

conv–diff problem and tetrahedral elements but is

much slower for prismatic elements. The best

results for R9 are obtained for storing the output

matrix in the shared memory that clearly indicates

problemswithproviding enough registers for faster

calculations. Surprisingly, one of the best results is

obtained for noncoalesced READING and WRITING,

which means that computations take for this case

more time than explicit memory accesses. The

problems with memory resources for R9 are indi-

cated also by the fact that coalesced READING that

requires additional shared memory, significantly

slows down the calculationswith the outputmatrix

in sharedmemory.

The Fermi processor has relatively flat profile

for the conv–diff problem on prismatic elements,

with no one option slowing down significantly the

execution. This is not true for Kepler, where stor-

ing the output matrix in the sharedmemory slows

down the execution. The Pascal processor has

almost the same profile as for the other test

cases, its high computational power with respect

to memory throughput manifests itself with hid-

ing computation time by memory access time.

Scalability

In order to obtain performance characteris-

tics of the developed kernels related to scalabil-

ity, we performed experiments for different

numbers of threads and different numbers of ele-

ments. We present the results for the newest and

Figure 3. Execution time for numerical integration over a

single finite element in the convection–diffusion test problem,

for different optimization options, tetrahedral finite elements,

and the four selected GPUs.

Figure 4. Execution time for numerical integration over a

single finite element in the convection–diffusion test problem,

for different optimization options, prismatic finite elements,

and the four selected GPUs.
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specifically designed for HPC architecture,

Pascal GP100, and a selected kernel that per-

formed well for all the test cases—the one

with coalesced READING and WRITING, as well as

computing all shape functions in advance and

storing PDE related data in the shared mem-

ory. Instead of relatively small meshes used

for the test examples designed for all consid-

ered GPUs (with 705 894 tetrahedral and

97 792 prismatic elements), we considered the

meshes with up to 5 647 152 tetrahedral and

6 258 688 prismatic elements. We obtained

good scaling with respect to the number of

elements that confirmed the results reported

in our previous publications.20

We present the performance data for the larg-

est meshes that fitted only the large memory of

Pascal GPU. First, we show the classical strong

scalability results in Figure 5, with the number of

thread workgroups as the measure of the num-

ber of threads. It can be seen that, since we limit,

our study only to a single GPU, the speed-up

curves depart from the perfect speed-up for the

growing number of threads. Nevertheless, for

the number of workgroups up to 56 (one work-

goup per GPU multiprocessors), we get good

speed-up (with the parallel efficiency above

70%). Moreover, with the increasing arithmetic

intensity of the kernels, the speed-up curves get

closer to the perfect speed-up.

Since the speed-up decreases for the larger

numbers of threads, we present the data that

indicate how the absolute performance of the

kernel behaves in that case. Figure 6 shows the

absolute performance in GFlops for all test cases

as the function of the number of thread work-

groups, up to four workgroups per GPU

multiprocessor.

Further increase of the number of threads did

not improve the results that remain at the level

8%–57% of the theoretical maximum. Since the

computational capabilities of the GPU are not

fully exploited, we checked the utilization of

memory bandwidth. The summary of the results

is presented in Figure 7 that shows the perfor-

mance of the kernel put on the roofline graph21

for the Pascal GPU. The kernel achieves memory

throughput, close to the throughput obtained

with the STREAM benchmark, indicating that it

approaches the available optimum.

Optimal Kernels

As the final result of our autotuning the best

versions for each kernel and each GPU architec-

ture were selected for the meshes with 705 894

tetrahedral and 97 792 prismatic elements and

their performance results presented in Table 3,

together with the results on the large mesh with

5 647 152 tetrahedral and 6 258 688 prismatic ele-

ments, obtained with the kernel selected for the

scalability study.

We used the execution time results to calcu-

late the estimated performance characteristics

in terms of the number of floating point opera-

tions per second (in TFlops) and the DRAM

memory throughput (in GB/s). Additionally,

in the same Table 3, we compared the

Figure 5. Performance characteristics for Pascal GP100

processor—speed up for the increasing number of thread

workgroups (up to two per GPU multiprocessor) and the

four test cases.

Figure 6. Performance characteristics for Pascal GP100

processor—performance in GFlops for the increasing number

of thread workgroups (up to four per GPU multiprocessor)

and the four test cases.
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performance achieved in our experiments with

the standard performance characteristics of

the GPUs—their theoretical peak and typical

benchmark data in TFlops and GB/s, presented

in Table 2.

It can be seen that the computations for tetra-

hedral elements, with low arithmetic intensity,

stress much more the memory systems of GPUs.

The performance of considered processors is

much below their computing capabilities, but

shows significant usage of their memory band-

width. All the GPUs handle well the case of

numerical integration for the Poisson problem on

tetrahedral elements with the throughput of

DRAM memory above 40% of the theoretical

peak. For the conv–diff problem, only Fermi

architecture decreases its performance, due to

the problems with too small number of registers

available to kernels that causes low occupancy of

multiprocessors.

For the conv–diff problem, with higher

arithmetic intensity, reaching satisfactory per-

formance turned out to be difficult for all the

GPUs except Pascal GP100. Its best results,

presented in Table 3 and Figure 7, should be

considered satisfactory for a relatively com-

plex algorithm of finite-element numerical

integration.

CONCLUSION
This article presented the use of automatic

experimental tuning for approaching the optimal

execution performance for the algorithm of

finite-element numerical integration and sele-

cted GPU architectures. For each tested GPU

and all the variants of finite-element numerical

integration, we obtained different (sometimes

slightly, sometimes largely) execution profiles

with different, sometimes not intuitively obvi-

ous, optimization options optimal for different

GPU architectures.

In our case of optimizing finite-element numeri-

cal integration, themost important aspectwas the

selection of variables to put in different memory

pools, associated with the necessary organization

of computations. We have shown that the proper

selection of tuning options and its implementation

Figure 7. Performance characteristics for Pascal GP100

processor—rooflinemodel diagramwith the performance achieved

by a selected numerical integration kernel for the four test cases.

Table 3. Performance results for the best variants of numerical integration for each GPU architecture, two types of finite elements

with first order approximation: tetrahedral (tetra) and prismatic (prism) and the two model problems: with Laplace operator

(Poisson) and with all convection–diffusion–reaction terms (conv–diff).

Type of element Tetra Prism

Mesh size Number of elements 705 894 5 647 152 Number of elements 97 792 6 258 688
GPU Fermi Kepler Tahiti Pascal Fermi Kepler Tahiti Pascal

Poisson problem
Execution time [ns] 4.66 2.24 1.82 0.84 0.77 33.52 11.63 12.26 2.04 1.48
Estimated GFlops 62 129 159 336 375 80 232 219 1317 1826
% peak GFlops 12 11 18 7 8 16 20 25 28 38
Minimal GB/s 62 128 158 333 373 15 45 43 257 357
% peak GB/s 41 62 55 61 68 11 22 15 47 65

Conv–diff problem
Execution time [ns] 18.61 5.13 2.38 1.15 1.05 123.83 14.36 35.97 2.56 1.80
Estimated GFlops 53 192 414 826 936 38 334 134 1874 2664
% peak GFlops 10 16 47 18 20 8 29 15 40 57
Minimal GB/s 22 81 175 348 395 5 44 18 249 355

% peak GB/s 15 39 61 64 72 3 21 6 45 65
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require deep analysis of the algorithm in view of

the available hardware resources.

As extensions of the presented investigations

and the directions for further research, we plan to

consider in forthcoming publications vector, non-

linear problems, second order and mixed approxi-

mations, additional options, and parameters for

autotuning as well as different parallelization strat-

egies (especially one-element-several-threads).
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The U.S. High-
Performance Computing
Consortium in the Fight
Against COVID-19

James J. Hack

Oak Ridge National Laboratory

Michael E. Papka

Argonne National Laboratory

Abstract—U.S. computing leaders, including Department of Energy National Laboratories,

have partneredwith universities, government agencies, and the private sector to research

responses to COVID-19, providing an unprecedented collection of resources that include

some of the fastest computers in the world. For HPC users, these leadership machines will

drive the AI to accelerate the discovery of promising treatments, enable at-scale

simulations to understand the virus’s protein structure and attackmechanisms, and help

inform policymakers to deploy resources effectively.

& BEGINNING AT THE time the World Health Orga-

nization declared COVID-19 a pandemic in mid-

March 2020, the research community has under-

taken an immense global collaboration to sup-

press SARS-CoV-2, the novel coronavirus that

causes the disease. The two biggest objectives in

COVID-19 research: development and evaluation

of vaccines and therapeutic treatments, and pre-

dicting possible trajectories of future outbreaks

by developing a clear understanding of how this

disease is transmitted.

Governments and public health officials

worldwide are struggling to control a virus that

is already widespread and easily transmissible,

including by asymptomatic carriers. Countries

with the advanced research facilities and infra-

structure, ready experimental pipelines, and the

participation of partnerships between entities

such as biotechnology companies, academic
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research laboratories, and government national

laboratories—all of which the U.S. has rapidly

put in place—have a distinct advantage in shap-

ing that response.

Early in the battle to understand, treat, and

control the COVID-19 pathogen, a unique private-

public effort was established, led by the White

House Office of Science and Technology Policy,

the U.S. Department of Energy (DOE), and IBM to

bring together federal government, industry, and

academic leaders who would make computational

resources available to the COVID research com-

munity. The goal of the COVID-19 High Performance

Computing Consortium (“The HPC Consortium”)

was to help accelerate the pace of scientific dis-

coveries in COVID-19 research projects.

The consortium brings together more than 30

partners from 7 national labs; NASA; 8 National

Science Foundation-funded organizations, nota-

bly XSEDE, which is processing the requests for

consortium resources, and the University of

Texas at Austin’s Texas Advanced Computing

Center, one of the consortium’s leading providers

of computing cycles; 11 technology companies

and 14 academic institutions, and provides

resources ranging from small clusters to cloud

andweb services to high-end supercomputers.

The DOE’s Office of Science operates many of

the world’s largest user facilities enabling themost

cutting-edge coronavirus research studies today,

such as efforts to understand its structure and

underlying biochemistry, and evaluating possible

therapeutics. Among thoseuser facilities areDOE’s

Leadership Computing Facilities, located at Oak

Ridge National Laboratory and Argonne National

Laboratory. Oak Ridge’s Summit IBM supercom-

puter and Argonne’s Theta Intel Cray supercom-

puter are currently enabling the most cutting-edge

coronavirus research studies today, powering

research in molecular modeling, bioinformatics,

and epidemiology to help accelerate the develop-

ment of treatments and strategies to combat the

COVID-19 pandemic. Access to these unique

computational ecosystems has been made avail-

able through proposal mechanisms established by

theHPCConsortiumwhere the capabilities include

access to state-of-the-art modeling algorithms,

data analysis tools, and huge numbers of CPUs and

GPUs. While relatively few consortium members

are able to exploit all of these capabilities, the

inclusion of leadership computing machines in

this arsenal represents a significant commitment

of technologies that are suited to run simulations

at the scale necessary to significantly accelerate

knowledge on how to control a global epidemic,

and to address rapidly evolving advances in our

understanding of the virus. Consortium projects

include running complexbiophysics investigations

at scale to help understand what treatment proto-

cols are and are not working; rapidly screening for

possible therapeutics using machine learning and

deep learning techniques; and running agent-

based models to run scenarios for how the virus

will spread given evolving guidance on social dis-

tancing and other hygienic behavior.

This article highlights several HPC Consortium

projects, and other related activities, actively

being supported at DOE’s Leadership Computing

Facilities and how these machines are being used

to accelerate the science needed to develop treat-

ments and strategies to combat COVID-19.

COVID-19 PUTS HIGH-END
COMPUTING ARCHITECTURES TO
THE TEST

Summit’s large array of very powerful hybrid

CPU-GPU nodes—more than 4600 nodes, each con-

taining 44 Power 9 cores and 6 NVIDIA Volta

GPUs—make the platform especially well-suited to

some specific but important types of investigations

related to the pandemic. First, molecular dynamics

(MD) simulations of the virus and its interactions

with human cells can be carried out on Summit at

scales and speeds that are unobtainable on other

resources. In addition, the use of machine learning

techniques to study how potential therapeutics

interact with one another, and with other drug

compounds, can take advantage of the unique AI

features of Summit’s GPU architecture.

Theta is a Cray XC40 manycore system built

on the Intel KNL 7230 processor with 64 cores

each. The system is comprised of 4392 nodes for

a total core count of 281 088. The system is well

suited for efforts that rely on the x86 instruction

set. In addition, Argonne has enabled near-real-

time response queues for Theta by exploiting

drain time of the system—this allows for cou-

pling with other unique instruments like

Argonne’s Advanced Photon Source (APS) for
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on-demand analysis. This capability, along with

Theta’s traditional support for modeling and

simulation, make it an important resource in

supporting research for the pandemic.

COMPUTATIONAL ADVANCES IN
EPIDEMIOLOGICAL MODELING

� Argonne computational scientist Jonathan

Ozik and his team have developed CityCOVID,

an agent-based model capable of tracking

detailed COVID-19 transmission. Agent-based

modeling is an approach for capturing the

dynamics of heterogeneous, interacting, adap-

tive agents at an individual, granular level of

detail. When applied to a city such as Chicago,

CityCOVID includes a synthetic population rep-

resenting the 2.7 million residents of Chicago

and the 1.2 million geolocated places where

they can colocate. Throughout a simulated

day, each individual, or agent, moves from

place-to-place, hour-by-hour, engaging in social

activities and interactions with colocated

agents, where COVID-19 exposure events can

occur. The COVID-19 disease progression is

modeled within each individual, including dif-

fering symptom severities, hospitalizations,

and age-dependent probabilities of transitions

between disease stages. Using Argonne com-

puting resources, CityCOVID is being used to

calibrate unobserved model parameters, such

as the time-varying degree of individual self-

protective behaviors across the population,

and to simulate a variety of interventions and

future scenarios. While the Argonne team has

been using Chicago as a testbed for developing

these capabilities, CityCOVID is being

extended to other regions as well.
� University of West Florida computer science

professor Ashok Srinivasan is using Argonne

resources to analyze the spread of COVID-19

during air travel through pedestrian dynamics

simulation. Srinivasan’s work attempts to bet-

ter understand the impact of new boarding

processes on exposure to the virus. To do

that, Srinivasan developed a computationally

efficient constrained linear movement model

and code and carried out a large parameter

space sweep to simulate realistic boarding

scenarios. The simulation results show that

back-to-front boarding roughly doubles the

infection exposure compared with random

boarding. It also increases exposure by

around 50% compared to a typical boarding

process prior to the outbreak of COVID-19.
� Purdue University professor Yung-Hsiang Lu

and a team of engineers built a website that

pools together live footage and images from

approximately 30 000 network cameras in

more than 100 countries to study social dis-

tancing, making data easier to analyze. The

site has documented footage since March

2020 that could help evaluate the effective-

ness of lockdowns and restrictions. The proj-

ect uses Argonne computational resources

and storage.

ADVANCED MODELING
AND SIMULATION

� G. Andr�es Cisneros, at the University of North

Texas, is using Summit to investigate inhibi-

tor mechanisms of existing drugs for the RNA

dependent RNA polymerase (RDRP) protein

to provide insights that could serve to

improve treatment options for COVID-19. He

and his team are using classical MD techni-

ques to investigate the structure and dynam-

ics of the protein with and without

inhibitors. He is also looking at Remdesivir, a

broad-spectrum antiviral medication, and

several other drugs, to understand how

these protein inhibitors are useful in battling

COVID-19 infections. Since protein inhibitors

can be used to prevent viruses and bacteria

from reproducing, their plan is to study the

interactions and reaction mechanisms at the

atomic level, something that cannot be done

in a traditional lab.

RAPID ANALYSIS COUPLED WITH
EXPERIMENTAL REFINEMENT

� A team of researchers at Oak Ridge and

the University of Tennessee, Knoxville (UTK)

led by Jeremy Smith, has already used Summit

to build a model of the coronavirus’ spike pro-

tein, also called the S-protein, based on early

studies of the protein structure. Using MD
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simulations, they explored approximately

800000 different compounds’ docking proper-

ties to the spike to determine if any might pre-

vent it from binding to human cells. They

ultimately identified 77 small-molecule drug

compounds—medications, natural com-

pounds, etc.—shown by the simulations to

bind to regions of the spike that are important

for entry into the human cell and, therefore,

might interfere with the infection process. The

team then took this work further using more

complete descriptions of the virus structure,

one of which was determined using x-ray crys-

tallography by a team from the Spallation Neu-

tron Source at Oak Ridge and a team at

Argonne’s APS. In a first-of-its-kind measure-

ment, the protease was determined from

room-temperature crystallized protein sam-

ples to achieve a more accurate three-dimen-

sional model of the protein (see Figure 1). This

provided the opportunity to computationally

explore compounds that can be shown to bind

to the protein, which might block the virus’s

replication mechanism. Using the improved

protein structures, the Smith team performed

MD simulations to computationally screen 1.5

billion chemical compounds for COVID-19 in

only 24 h, providing a wealth of data for SARS-

CoV-2 drug discovery efforts. Because the

virus’s main protease is an important drug tar-

get, the simulations might lead to an under-

standing of which drugs could be successfully

repurposed for COVID-19.
� Scientists from Argonne’s Structural Biology

Center at the APS, including Argonne Distin-

guished Fellow Andrzej Joachimiak, and

working with Mateusz Wilamowski of the Cen-

ter for Structural Genomics of Infectious Dis-

eases (CSGID), performed experiments on

the Nsp10þNsp16 protein complex of SARS-

CoV-2 created at CSGID. The experiment pro-

vided the first low-dose, room-temperature

insight into the structure of this protein com-

plex. Its results will give the community

greater biological insight into the complex

than is possible with traditional crystallogra-

phy techniques. The experiment is designed

to determine the metal activation of the com-

plex and later lead to time-resolved experi-

ments, which will be the first dynamic

structural experiment of a SARS-CoV-2

related protein. Time-resolved structural

dynamics will help elucidate the electro-

chemistry of this protein function and give

insights into the virus. To support the rapid

processing requirements, a team led by com-

puter scientists Ryan Chard and beamline sci-

entist Darren Sherrell deployed an automated

data acquisition, analysis, curation, and visu-

alization pipeline, leveraging Theta for high-

speed on-demand analysis. The pipeline

reactively analyzes data as it is collected,

moving images of the sample from the APS to

the Argonne Leadership Computing Facility

where they are rapidly analyzed and visual-

ized. The same automated pipeline then

moved results to a repository and extracted

metadata for publication in a data portal,

which scientists can monitor during an

experiment.
� A team led by Albert Lau, assistant professor

of biophysics and biophysical chemistry at

the Johns Hopkins School of Medicine, is

using a joint computational and experimen-

tal approach to identify FDA-approved drugs

that possess antiviral activity against SARS-

CoV-2. Theta is being used to screen a

library of compounds that includes existing

FDA-approved drugs against ten intracellu-

lar catalytic SARS-CoV-2 protein targets for

Figure 1. Overlapping x-ray data of the SARS-CoV-2

main protease shows structural differences between

the protein at room temperature (orange) and the

cryogenically frozen structure (white). This work is

being used by JeremySmith and his teamwho are

conducting drug docking simulations using Summit.

Credit: Jill Hemman/ORNL, U.S. Dept. of Energy.
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binding, with the goal of identifying drugs

that disrupt viral protein function and

diminish viral viability. Reducing the num-

ber of compounds and protein targets to an

experimentally manageable number will

help the team establish priorities for the

subsequent workflow, in which target pro-

teins will be expressed and purified, and

activity assays will be developed. Finally,

prioritized compounds in the Johns Hopkins

Drug Library will be screened against the

purified target proteins to identify those

that exhibit antiviral activity.
� A multi-institutional team from the UTK, the

Yale School of Medicine, the U.S. Depart-

ment of Veterans Affairs, the Versiti Blood

Research Institute, the University of Ken-

tucky and the Cincinnati Children’s Hospi-

tal Medical Center, led by

Oak Ridge computational

biologist Dan Jacobson, has

performed data analyses on

Summit to analyze samples

of lung fluid cells from

COVID-19 patients. Analysis

of COVID and control

patients is aimed at finding gene expression

and coexpression patterns that may

explain the runaway symptoms produced

by the body’s response to SARS-CoV-2. The

team required the power of Summit to run

2.5 billion correlation calculations that

helped them understand the normal regula-

tory circuits and relationships for the

genes of interest. With Summit, the team

completed the calculations in one week

rather than spending months doing them

on a desktop computer. Early results have

found that genes related to one of the

body’s systems responsible for lowering

blood pressure—the bradykinin system—

appear to be excessively “turned on” in the

lung fluid cells of those with the virus. A

bradykinin storm could explain the wide

variety of symptoms experienced by

COVID-19 patients, such as muscle pain,

fatigue, nausea, vomiting, diarrhea, head-

aches, and decreased cognitive function. At

least ten existing drugs are known to act on

the specific pathways the team studied, but

large-scale clinical trials are needed to

determine whether they might be effective

at treating COVID-19.

RAPID SCREENING USING
AI TECHNIQUES

� The many clinical manifestations of COVID-19

have so far proven to be resistant to existing

single drug therapies. A team led by Jennifer

Diaz of the Icahn School of Medicine at Mount

Sinai has developed amachine learning classi-

fier to predict whether certain drug combina-

tions might be effective against the virus. The

team is using the classifier on Summit to pre-

dict gene expression patterns for more than

700 000 combinations of existing drugs. In a

preliminary analysis, Diaz’s team identified

U.S. Food and Drug Administra-

tion (FDA)-approved drugs that

are already being studied to

treat COVID-19 as well as novel

drugs that may have a synergis-

tic effect when combined. Stud-

ies have suggested these

synergistic gene expression

predictions can be used to identify biological

pathways and processes that will be altered

for each combination. The team plans to

expand the database, improve the classifier,

and use gene set enrichment analysis to

make predictions of drug pairs that may be

a synergetic COVID-19 treatment. Predic-

tions from this unique analysis must be vali-

dated in wet labs or clinical trials to

determine their viability and efficacy. Suc-

cessful laboratory validation will allow a

broadening of the project scope to explore

highly focused drug combinations in the

millions.
� An Argonne-based team is seeking to address

both the fundamental biological mechanisms

of the virus and the disease, while simulta-

neously targeting the entire viral proteome

to identify potential therapeutics. Argonne

computational biologist Arvind Ramanathan

and Argonne Associate Laboratory Director

Rick Stevens, are leveraging Argonne and Oak

Ridge leadership machines to design novel

A bradykinin storm

could explain the wide

variety of symptoms

experienced by

COVID-19 patients.
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therapeutics against SARS-CoV-2 using AI

approaches that integrate information from

experimental observations, and rigorous,

physics-based virtual screening and molecu-

lar simulations, to identify viable drugs that

can inhibit viral proteins. These AI appr-

oaches, based on advances in deep learning

and reinforcement learning, are capable of

predicting how strongly a small molecule will

bind to a protein as well as explore the struc-

tural space of compounds that are predicted

to bind to find more suitable variants.

The database of potential drug candidates

for COVID-19 is immense, including millions to

billions of potential compounds. So far, compu-

tational screening of small molecules has

resulted in identifying molecules that can

potentially inhibit viral function in wet lab

experiments. These experiments, performed at

the Argonne-located BSL-3 facility, involve live

human lung cell cultures being exposed to small

molecules followed by subsequent measure-

ments that monitor viral replication. These mol-

ecules are being further refined to optimize

them for binding to specific viral target pro-

teins. Using AI techniques, the team has

screened over 6 million small molecules and are

validating them at Argonne for activity against

the virus and rapidly expanding it to screen bil-

lions of compounds. The potential impact of

this work is the design of new generative mod-

els based on reinforcement learning for both

small molecules and antibodies; and develop-

ment of large-scale, AI-driven simulations of the

entire viral particle and drugs bound to the vari-

ous viral targets, as a better pathway to an anti-

viral drug.
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Data Visualization for
the Understanding of
COVID-19
Jo~ao L. D. Comba

Universidade Federal do Rio Grande do Sul

Abstract—Visualization techniqueshavebeen front-and-center in theefforts tocommunicate

thesciencearoundCOVID-19 to the verybroadaudienceof policymakers, scientists,

healthcareproviders, and thegeneral public. In this article, I summarizeand illustratewith

exampleshowvisualizationcanhelp understanddifferent aspects of thepandemic.

& THE DEADLY IMPACT of COVID-19 is driving a

massive amount of research that aims at under-

standing the various characteristics of the pan-

demic. While there is no vaccine, considerable

effort has been devoted to understanding the

spread of the disease in different places in the

world. The speed with which the disease has

spread throughout the world demands agile sol-

utions to understand and estimate the disease

progression.

Interactive dashboards with several charts

surfaced in different formats to offer concise

ways to express the pandemic’s growth. Figure 1

illustrates some examples. The dashboard devel-

oped by Johns Hopkins University (JHU)1 was

the first to track and display information on

cases and death totals for different countries

and states in the United States. Along with lists

of total counts and histograms, a bubble map

composed of circles of different radii allows a

visual inspection of how serious the pandemic is

around the world. Interesting plots were created

on news outlets such as the New York Times

(NYT)2,3 and the Washington Post.3 For example,

NYT used Choropleth maps, a representation

where geographical regions (countries or states)

are mapped to colors associated with a measure-

ment for that region (e.g., number of cases). This

representation is useful to communicate trends,

such as the average daily counts for the past

week. Similarly, they display the time series evo-

lution for each region using line heatmaps, where

daily values are mapped to colors and displayed

in a row. Our work (described in more detail in

the following) used both Choropleth maps and
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Figure 1. Dashboards and interactive tools to analyze COVID-19 data: Johns Hopkins University Dashboard, The New

York Times charts (used with permission), and INF-UFRGS Brazil Dashboard.
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Figure 2. (Top) Heatmap matrices are useful for comparing time series such as the total deaths for different countries.

Columns can be aligned by the first date after reaching a certain threshold, which allows us to compare when countries

passed through specific checkpoints. (Bottom) Searching for places with similar timelines of deaths to Italy.

November/December 2020 83



Figure 3. Applications: Literature exploration, contact tracing, spread of claims and fact checking, and simulation of the

transport and spread of the novel coronavirus.
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line heatmaps in the development of dashboard

specially designed for Brazil. Using a focus-plus-

context interface with coordinated views, the

user can inspect the context using two Choro-

pleth maps (one for the states and a second for a

state selected), as well as details using two

matrix heatmaps (collection of stacked line heat-

maps) for states and cities. The tool displays

daily or cumulative data, absolute or relative to

population, and supports filtering by a time

interval.

A vast collection of community-developed

dashboards and interactive tools about COVID-

19 are available. Good starting places to look are

the data hub hosted by Tableau and the top 100

R-resources organized by Soetewey.4 In-depth

analysis is available at sites, such as Our World

in Data,5 Bing,6 and the COVID Tracking Project,7

among others. After developing the Brazilian

dashboard, we devoted our efforts to create a

set of tools to compare the spread of COVID-19

data in different regions of the world.8 We col-

lected data from more than 6 000 locations in

the world, and our interface has different charts

that support visualizing multiple locations in a

single chart. Since the pandemic is at different

stages in the world, we allow the user to align

the time-series of data by a certain data the

series passes a given threshold (e.g., after 100

cases). This representation is useful to observe

when different locations passed through specific

checkpoints (top of Figure 2).

While our initial charts support the compari-

son of different regions, the tool required the

user to drive the process of choosing the regions

to compare. From the beginning, we felt the need

to have an automatic tool that could, given a

region of interest, return the closest regions

given a similarity function. Looking at the dis-

ease’s spread in distinct places, but with similar

growth patterns, can be useful to predict behav-

iors. Thus, we developed a search engine to sup-

port queries using different similarity functions.

For example, at the bottom of Figure 2, we show

the results of searching for regions similar to Italy

concerning the number of deaths. The results are

listed in a ranking, with pairwise comparisons

that detail attributes of the different locations

and evolution charts, aligned by the day of the

first death. We observe the similarities in the evo-

lution in the number of deaths and cases for Italy,

France, Spain, and the United Kingdom. While

using the tool, we also saw similarities among cit-

ies from Brazil and the United States, both coun-

tries with large COVID-19 numbers.

The examples so far give a glimpse of how

data visualization can help in the understanding

of COVID-19. Figure 3 illustrates other applica-

tions where data visualization can help. The

first example shows how multidimensional pro-

jections and network visualizations can help the

literature exploration of papers that describe

novel coronavirus research. As new research

about COVID-19 is published, there is a great

need to review up-to-date literature and treat-

ments conveniently. Contact tracing is another

application that relies on graph visualization to

trace the network of people who may have

been in contact with a COVID-19 patient, an

activity essential to control the dissemination

of the disease and essential for directing social

distancing regulations. Graph visualization is

also important in for social media spread and

fact checking. With many people at home, social

networks are playing a significant role in peo-

ple’s lives these days. Unfortunately, the dis-

semination of fake news and automated posting

from robots is also rising. Fact-checking over

the propagation network can help identify mis-

leading information and patterns of dissemina-

tion. The fourth and final example highlights

the importance of data visualization in the anal-

ysis of scientific simulations. It shows the visu-

alization of simulating the transport and spread

of novel coronavirus in closed spaces,9 which

shows how an infected person can disseminate

the virus indoors.

Many other examples include data visualiza-

tion in the analysis of COVID-19 data, and many

more is surfacing every day. We hope this sum-

mary highlights interesting examples, give

pointers to other references, and motivate peo-

ple to pursue other applications.
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Lattice Gas Cellular
Automata Fluid Dynamics
Case Study

Micah D. Schuster

Wentworth Institute of Technology

Abstract—The Navier–Stokes equations are the basis for describing the flow of a viscus

material and are used tomodel fluid motion fromweather to air flow over a wing. These

equations, however, tend to be notoriously difficult to solve, whether analytically or

computationally, even for small systems due to their highly nonlinear nature. Thus, less

complicatedmethods that aremore computationally tractable are desirable in domains as

varied as hydroelectric power to race car construction. At a fundamental level, fluids are

composed of interacting molecules. Lattice Gas Cellular Automata (LGCA) represents an

efficient way to simulate these interacting fluid particles on a lattice. LGCA captures the

microscopic behavior of the fluid by applying simple collision and propagation rules at

each lattice site. This leads to realistic macroscopic behavior that can be used to build

insight about real fluid flow. Here, we show the Hardy, Pomeau, and de Pazzis model for

simulating a lattice gas. The computational framework presented in this case study can

also be expanded tomore complicated LGCA.

& CELLULAR AUTOMATA (CA) is a discrete model

often used in computer science, mathematics,

physical sciences, and biological sciences to

model complex behavior starting with a simple

set of rules. The concept was originally devel-

oped by Stanislaw Ulam and John von Neumann

in the 1940s at Los Alamos National Laboratory for

work on crystal growth and self-replicating robots.

Further work was done by scientists andmathema-

ticians throughout the rest of the century. Stephen

Wolfram, in the 1980s, explored CA in the context

of mathematics, physics, biology, and chemistry.

His book on this research, A New Kind of Science,1

was published in 2002 and is an important starting

point for learning about physical modeling using

CA. This case study focuses on a simple fluid

model that is easily implemented yet retains the
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macroscopic fluid behavior present in more com-

plicated simulations.

In the early 1970s, Hardy, Pomeau, and de Paz-

zis2 introduced the first CA fluid dynamics simu-

lation. The model is known as the HPP model

after the last names of the authors. It was the first

of a class of CA that incorporated point particles

that move along a lattice. Thus, the state of each

cell represents particle interactions.

The lattice is composed of two parts: cells

and nodes. The cells are the traditional repre-

sentation of the square lattice. Each cell, how-

ever, contains four nodes, one for each cardinal

direction. Thus, the state of each cell is deter-

mined by the specific occupation of the nodes,

see Figure 1. The nodes themselves represent

the fluid particles entering or exiting each cell.

This sublattice of nodes is tightly coupled to

the amount of data that each cell must contain

to represent its current state. For example, if all

four nodes contain particles, one could use the

value “4” to represent that state. This represen-

tation will be the key to performing the simula-

tion update in a concise manner.

Computing the next state of the system is

significantly different than traditional CA. The

HPP model updates in two distinct steps: par-

ticle propagation from one lattice site to

another and intracell particle collision. Each

is computed separately on any given iteration.

The discretization of these dynamics allows

us to define a set of rules that approximate

fluid-like behavior.

SETUP
The initial setup of the HPP simulation

requires two choices by the user: the grid

dimensions and the node representation. A grid

size of 512 or 1024 in each dimension will be suffi-

cient for our test application. The choice of grid

size is important for two main reasons: to reduce

the noise that arises because of the granular

nature of the simulation by averaging cell occupa-

tion, defined by the number of nonzero nodes in a

cell, and to increase the size of the domain to add

more complex features like obstacles.

Since each of the four nodes within the cells

can be occupied or unoccupied at any given iter-

ation of the simulation, they only require a single

bit to represent their occupation. Thus, using a

single byte for each cell gives ample memory for

large grids. Most languages have a data type that

represents a single byte, e.g., unsigned char in

C/C++ or uint8 in MATLAB. We will use the con-

vention that the first four bits represent up-left-

right-down. For example, a cell with occupied up

and down nodes would be 1001.

Any CA uses two buffers, which are two iden-

tical grids. One contains the current state of the

simulation and is read from to apply our simula-

tion rules. The second buffer is written to as the

current iteration updates the lattice. Without

this double buffer approach we would obtain

incorrect results after the update.

Typically, we choose a random initial occupa-

tion for each cell, between 0 and 4, to represent

the average density of particles in the domain. To

make the simulation more interesting, we will add

a high-density region, i.e., an occupation of four

for all cells within a given region. This will create

familiar wave-like behaviorwithin the domain.

PROPAGATION
Each individual particle in the simulation is

represented by an occupied node. The rules by

which these particles move from cell to cell are

important for understanding the propagation

step.

� Each particle of the fluid moves in one of the

four cardinal directions to a new cell deter-

mined by the node that it occupies at the

propagation step.
� The particles all move at the same speeds,

chosen to be one for convenience.
� The particles never move diagonally in the

HPP model.

Figure 1. Each grid cell contains four nodes,

representing the cardinal directions.
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There are compact ways to represent the

propagation using a series of bitwise operations,

however, for clarity, we will present the algo-

rithm using a series of masks and bit shifts.

We will also include a getter function for each

direction that gets the index of that adjacent cell.

The appropriate mask is then applied to that cell,

which isolates a specific node. For example, using

the hex value 0�01 will isolate a particle that will

move into the current cell from above. Most lan-

guages need a 0x or 0b in front of the number to

represent hexadecimal or binary, respectively.

We then bit shift that value into the correct posi-

tion for the current cell. In effect, an occupied bot-

tom node in the above cell will propagate into the

top node of the current cell. We then do this pro-

cess for each direction to build the new current

cell. This process is shown in the Listing 1.

Listing 1. Propagate function.

void propagate(){

unsigned charup, down, left,right, final;

for(int i = 0; i < total_size; i++){
up = (buffer1[GetUp(i)] & 0x01) << 3;
left = (buffer1[GetLeft(i)] & 0x02)<< 1;
right=(buffer1[GetRight(i)]&0x04)>> 1;
down = (buffer1[GetDown(i)] & 0x08)>> 3;
final = up | down | left | right;
buffer2[i] = final;

}

swapBuffers(&buffer1, &buffer2);
}

ACTIVITY 1: Basic Propagation With Bitwise

Operators

When we propagate particles from cell to cell,

we use a bit mask and a bit shift. Eachmask is sim-

ply a number thatwe apply to a grid location using

a bitwise AND operator. The way we represent the

number does not actually matter but is easier to

visualize when using binary or hexadecimal. Test

this operation by starting with the value 9, or

0b1001when using a binary number in your code.

� Create a variable with a value of 1, or 0b0001

in binary, to use as our mask.
� Apply the bitwise AND (& in most languages):

9 & 1. In binary form, this operation is

0b1001 & 0b0001 = 0b0001.

� Now apply a bit shift to the result, for exam-

ple, 0b0001 << 3. This will shift all the bits

to the left by three spaces. Verify the result

to be 8, 0b1000 in binary.

Determine all the masks that we need for

each of the four cardinal directions.

Here, total_size, buffer1, and buffer2

can either be global or passed into the function.

We loop over every cell in the simulation,

total_size, in this case using a one-dimen-

sional array. The two buffers are arrays that rep-

resent the two grids that we work with. buffer1

will always contain the current state of the grid

and buffer2 is the grid that is written to during

the propagation step. After updating the grid,

the buffers are swapped to prepare for the next

propagation step. The four getter functions

allow us to get the appropriate grid index for the

current cell’s neighbor.

ACTIVITY 2: Propagation at the Boundary

Attempting to access elements beyond the

edge of the grid in the above code will cause

major problems when running the simulation.

� Try to think of several options for handling

the boundary cells.
� In this case, we will consider the first and last

row/column to be fixed, i.e., no propagation

occurs when particles enter these boundary

nodes. Effectively particles “bounce” off the

walls. Implement this condition.

COLLISION
The calculation of the collision step is

straightforward in that it only requires knowl-

edge of the current occupation of the cell and

the possible collisions that the HPP model

allows.2 In this step, we assume that each occu-

pied node represents particles moving into the

cell. Once the collisions have been applied, the

nodes will represent the particles moving in the

outgoing direction, which prepares us for the

next propagation step.

The most important requirement for proper

collisions is the conservation of momentum. In

the HPP model, each particle is assumed to

have the same mass and the same speed when

moving along the lattice. Thus, the momentum,
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the product of mass, and velocity, can be deter-

mined solely by the direction of motion. Due to

the square lattice, this requirement restricts

the possible types of collisions to two (though

they are the same collision, just rotated 90�).
Figure 2 shows the cell state before and after

collision. In both configurations, the total

momentum in the cell is zero because the par-

ticles are moving in opposite directions, thus

the collision conserves momentum. All other

cell states update as if no collision occurs, i.e.,

the particles simply move through each other.

The code in Listing 2 shows the collide func-

tion.We obtain a reference to each cell, invoke the

lookup table by sending the current state as the

index and getting back the state resulting from the

collision, and save the result to buffer2. The buf-

fers are then swapped, similar to Listing 1. Again,

total_size, buffer1, and buffer2 can either

be global or passed into the function.

Listing 2. Collide function.

void collide(){

for(int i = 0; i < total_size; i++){
unsigned char node = buffer1[i];
buffer2[i] = collisionLookup[node];

}

swapBuffers(&buffer1, &buffer2);
}

ACTIVITY 3: Basic Collisions

Our collision code will use a lookup array

where the index of the array represents the state

of the cell before collision and the value is the

state after the collision. For example, index 1,

binary value 0b0001, represents a particle in

the down position. After the collision step, that

particle will be in the up position because it

passes through the cell with no other particles

to interact with. The value of the array at index 1

will then be 8, or 0b1000.

Adding obstacles in the domain can be done

by utilizing an additional bit in the data type rep-

resenting the cell. One simply checks if the bit is

set. If it is, the collision is not performed. This

effectively causes the particle to bounce off the

obstacle.

VISUALIZATION
CA fluid dynamics models tend to be very

noisy. This is due to the visualization of the

occupation at each lattice point via a color. This

represents the microscopic structure of our

fluid, which while interesting, is not as useful for

viewing large scale, macroscopic behaviors.

The first step to create our macroscopic visu-

alization is to consider a second grid that con-

tains fewer cells to display. For example, if the

microscopic lattice is 1024�1024, we can create

a smaller lattice of dimension 64�64. To gener-

ate the value for each cell in the smaller grid, we

will sum the particle occupation in each 16�16

region on our large lattice. Then, we divide by

1024, representing the total possible occupation

for the 16�16 region (256 total cells with 4 possi-

ble particles per cell). Effectively, we are com-

puting the spatial average over sets of lattice

points, which is the average particle density.

Choosing the appropriate size for the micro-

scopic lattice and the associated averaging region

depends largely on the structure of the domain

that you want to simulate. The general rule is that

if L is size of the macroscopic domain, la is the

size of the averaging region, and a is the spacing

between lattice points in the microscopic lattice.

One should choose these values such that

L � la � a: (1)

For CA fluid simulations the particle density is

often averagedover 32�32or 64�64 lattice points.

We can also include momentum as part of our

visualization. As we mentioned before, because of

our assumptions for mass and velocity of par-

ticles, the momentum in a specific dimension is

either �1 or 1, depending on the direction of

motion of the particle. Thus, the average momen-

tum on the macroscopic grid can be computed by

summing the individual particle momenta. This

Figure 2. Rotationally symmetric two particle

collision.

Your Homework Assignment

90 Computing in Science & Engineering



can be visualized by displaying an arrow for each

macroscopic grid location.

Figure 3 combines all the above visualizations

and shows the evolution over time of the average

density and average momentum. We use a micro-

scopic lattice of 2048�2048 with a macroscopic

lattice of 32�32. We can now see the average

momentum as the wave propagates through the

domain. The initial condition shows a uniformpar-

ticle density, except for the high-density region,

and random momentum vectors which corre-

spondwith the underlying randomstarting lattice.

CONCLUSION
In this case study, we have learned how

to represent, calculate, and visualize fluid par-

ticles, their propagation, and collisions over

time. After mastering the HPP model, we recom-

mend attempting to implement the FHP model,3

developed by Frisch, Hasslacher, and Pomeau

in 1986. This fluid model lies on a hexagonal lat-

tice, thus increasing the number of possible

interactions at a given lattice location. Overall,

this creates a more realistic fluid simulation.
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momentum vectors, shows as arrows.
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Diversity and Inclusion
Through Leadership
During Challenging Times
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& BY SOME MEASURES, significant progress has

been made in diversifying computing in sci-

ence and engineering (CSE). The first Grace

Hopper Celebration of Women in Computing

conference brought together 500 technical

women in 1994, while the 2020 conference is

expecting 30 000 attendees. Diversity organiza-

tions in CSE exist in a variety of diversity

dimensions such as gender, race, ethnicity,

sexual orientation, and technical areas such

as computing, math, and engineering. For

example, we have organizations focused on

women in mathematics, Blacks in engineering,

LGBT in math, and Hispanics in computing, as

well as many other combinations. The growth

of these organizations represents important

progress and maturity toward diversifying. This

progress was accomplished by a focus on the

“D” in diversity and inclusion. That is, a focus

on the underrepresented by providing

important tools, community, and resources;

or “fixing the minorities.”

Yet, the data show considerable gaps still

remain between the available talent and actual

participation by these groups, as well as higher

dropout rates for underrepresented groups. Fur-

ther progress calls for new approaches to diver-

sity and inclusion. The maturity of the “D”

suggests addressing inclusion, or the “I” side.

This requires not just a focus on marginalized

people, but also efforts to transform the broader

communities to places where all people are wel-

come, productive, and thriving; environments

where inclusion is the norm,1 i.e., normal

practice.

Recent events, including the COVID-19 pan-

demic and the Black LivesMattermovement, high-

light longstanding systemic issues related to racial

and ethnic disparities. This spotlight created a

global focus on diversity and a great deal action

including protests, new or renewed commitment

to diversity, and interest in ways to create change.

The momentum generated begs for action. This

article describes ways to harness themomentum.
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WHY TACKLE DIVERSITY AND
INCLUSION WITH LEADERSHIP?

Leading in science requires not just coordina-

tion of larger and larger teams,2 but also the ability

to spur creativity and innovation, as described in

a science leadership handbook,3 “It is said that

the truth shall set us free; yet we need freedom to

discover the truth. Thus, leaders in science and

technology (S&T) must accept responsibility for

the results of their work and for the means they

use to accomplish it. Fundamental to that respon-

sibility is respect for facts, for creativity, and for

colleagues.” Cultivating respect for colleagues

fromunderrepresented groups has proven elusive

given the common sources of attrition, e.g., bias,

feelings of isolation, and lack of rolemodels, confi-

dence, and social capital.

Considerable effort over the past several deca-

des by policy makers, researchers, and practi-

tioners has resulted in steady but slow progress

toward diversifying the S&T workforce. Important

outcome includes the creation and significant

growth in organizations such as the Association of

Women in Computing, National Society of Blacks

in Computing, Hispanics in Computing, Black Girls

Code, and the Association for LGBT Mathemati-

cians (Spectra). However, CSE has seen very little

progress. According to the National Science Foun-

dation Science and Engineering Indicators, repre-

sentation of women earning doctorates in

computing has grown less than 4% from 2000 to

2015. For others earning doctorates, representa-

tion of Hispanics in computing has grown under

2%, Blacks or African Americans have almost dou-

bled, but are still under 7%. In mathematics and

statistics, the growth is slower, and some declines

are seen, as shown in Table 1.

Organizations focused on specific dimensions

of diversity create communities where the under-

represented are the majority and provide impor-

tant resources and voices to the communities

they serve. However, changes in representation

remains extremely slow. Common approaches

focus on increasing the pipeline. This approach

has been hindered by higher dropout rates, also

known as the “Leaky Pipeline” problem. Achieving

significant growth requires efforts in both diversity

and inclusion. Inclusion requires transformation

of the broader community to prevent higher attri-

tion rates. Such organizational change requires

commitment from the leaders who control organi-

zational power structures; it requires leadership.

WHY NOW?
The world changed in early 2020 when the

COVID-19 pandemic spread across the globe. Econ-

omies, socialization, education, and infrastructure

have been dramatically affected as people found

new ways of working and living while sheltering in

place. The impacts are not just dramatic; for many,

they are surreal. In early April, U.S. data started to

emerge indicating disproportionate effects on

Blacks, Hispanics, and Native Americans. The U.S.

National Institutes of Health report a consistent

pattern of racial/ethnic differences in the infection

and morbidity rates among African American/

Black, Latino, American Indian, Alaskan Native,

and Pacific Islander populations.4 For example,

comparing hospitalized and nonhospitalized

COVID-19 patients at six acute care hospitals in

Atlanta, GA, and selected outpatient clinics, blacks

represent 79% of hospitalized patients5 although

they are just 52% of the population there. The pan-

demic also dramatically affects education as most

schools have transitioned to online learning. The

rapid movement to remote education has created

different burdens and, in some cases, huge bar-

riers. The digital divide, parents juggling work

from home and new schooling needs and being

poorly prepared to serve as teachers, online dis-

crimination and bullying, and systemic racial bias

are furthering the pandemic effects on education.6

It is unclear what long-term affects the pandemic

will have on education; however, it is likely that it

will exacerbate existing inequities such as lower

Table 1. 2000 and 2015 Earned Doctorate Degrees at U.S.

Academic Institutions (Source: 2018 National Science

Foundation Science & Engineering Indicators).
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entry and participation rates and higher dropout

rates forminorities.

The disparate effects of the pandemic are

intensified by recent events surrounding the

Black Lives Matter movement. This combination

created a spotlight on issues around race, eth-

nicity, diversity, and inclusion. In S&T education

generally, and specifically in CSE, long standing

disparities in representation are emphasized by

this spotlight. As a result, organizations and indi-

viduals have increased commitment to diversity,

similarly to what happened six years ago. In

2014, major technology companies announced

commitment to diversity and invested millions

of dollars, however little change in metrics

occurred. New approaches are needed to capi-

talize on the current momentum.

DIVERSITY AND INCLUSION
LEADERSHIP: CRITICAL MASS AND
INTEGRATION

Leadership in science comes with responsibil-

ity, as described above; “Fundamental to that

responsibility is respect for facts, for creativity, and

for colleagues.” Leaders need to develop respect

for colleagues. However, the data and the reasons

why the numbers are so low, such as bias and feel-

ings of isolation, suggest that this has continued to

be a challenge. To form productive teams of people

from different backgrounds, leaders need to assem-

ble groups ensuring all team members develop a

sense of belonging and respect for differences and

each other, while cultivating creativity and collabo-

ration. The current participation by women and

minorities in CSE suggests scientists from inhomo-

geneous backgrounds, in many cases, are the only

ones or one of just a few in otherwise majority

groups; that is the only female, Black, Hispanic,

Native American, etc. The small representation

leads to feelings of isolation and low self-efficacy

and/or lack of belonging. To combat this situation,

critical mass, that is larger groups of underrepre-

sented individuals, is needed, thereby reducing the

sense of “I’m the only one.” Diversity focused

organizations have demonstrated success with this

approach. However, returning to environments

where underrepresentation is dominant continues

to be problematic. Also essential is the balance

of subgroups where minority members achieve

criticalmass,with integration into theoverall group

through activities that promote respect. Techni-

ques for how to achieve this balance are described

below, beginningwith an analogy.

Nature has ingeniously found ways to create

complex structures such as leaves and snow-

flakes. These structures are formed through a nat-

ural self-assembly process known as dendritic

growth by which individual atoms or molecules

form intricate structures. Building on natural self-

assembly, scientists have devised techniques to

create structures such as carbon nanotubes that

have proven extremely valuable for medicine,

materials science, and other areas and the resul-

tant generative field of nanotechnology. The

distributed flight array of modular robots capable

of three-dimensional movement, flight, and

response to stimuli7 is an engineering example of

how coordination of modular components produ-

ces structures of great use, see Figure 1. Both

examples rely on adaptation of naturally occur-

ring phenomena or coordinated self-assembly to

create larger more useful superstructures.

What if this principle could be applied to

leadership in science to promote diversity and

inclusion?

Self-assembly of snowflakes and carbon

nanotubes exploits natural phenomena. Inven-

tors of nanotubes and robotic flight arrays

adjust natural processes by combining individ-

ual components into coordinated superstruc-

tures. How could this idea be applied to science

leadership? Science requires innovation and

coordination of research and researchers; tak-

ing individual units and combining them into

larger more productive structures. Creativity

requires freedom and respect and research indi-

cates that diversity results in greater innova-

tion.8 Therefore, leaders must focus on

cultivating natural individual capabilities while

facilitating cooperation and respect in diverse

groups. The Agile leadership style, an example

of this principle widely used in computing, cre-

ates conditions for self-organization where

teams collaborate, learn from each other, and

get quick feedback. Adapting this approach to

support diversity and inclusion requires leader-

ship that promotes the following:

� freedom from bias, isolation, low self-efficacy;

Diversity and Inclusion
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� respect for each person’s background, differ-

ences, needs;
� integration within broad, not segregated

communities;
� balance of critical mass with integration.

Example

Like many professional societies, the Society

of Industrial and Applied Mathematics (SIAM) is

composed predominantly of white males. Guided

Affinity Groups at SIAM CSE conferences aim to

promote diversity and inclusion by creating small

learning groups led by SIAM CSE society mem-

bers. The groups invert the ratios such that the

minority becomes the majority. Each morning,

groups with concentrations of women andminor-

ities meet with their leader to discuss technical

topics and equip them with knowledge and tools

to attend conference events where they are again

in the minority, flipping the ratios back. This

inversion is repeated throughout the conference,

creating a series of inversions illustrated in

Figure 2. Feedback from participants indicates

the activity effectively instills confidence,

increases feelings of self-efficacy and belonging,

and teaches society members about available tal-

ent from sources they would have never consid-

ered or been exposed to otherwise.9 The

program promotes respect and creativity while

balancing critical mass and integration.

DISCUSSION AND CALL TO ACTION
The participation of women and minorities in

CSE remains low. Considerable progress toward

diversifying CSE and more broadly S&T is seen

through the creation and growth in organiza-

tions focused on supporting members of under-

represented groups, yet the progress remains

slow. The coupling of this phenomena with the

leaky pipeline problem suggests new appro-

aches are needed. The country continues to

endure effects of the pandemic and racial ten-

sions. Rather than trying to get back to normal,

the country needs to create new norms through

Figure 2. Series of inversions to balance critical

mass with integration.

Figure 1. Snowflake, leaf, carbon nanotube, and distributed flight array robot.
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leadership addressing sources of disparities.

Leaders are responsible for not only fostering

innovation but, also for cultivating respect for

facts, creativity, and for colleagues. In the cur-

rent workforce, women and minorities do not

experience equal access or the necessary

respect to thrive and innovate. Leaders need to

ensure their actions result in 1) freedom through

identity; 2) respect for each person’s back-

ground, differences, and needs; 3) community

integration, not segregation; and 4) balance of

critical mass with integration. Recent events

have highlighted long standing issues, stimu-

lated momentum, and created opportunity to

make significant progress.
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Abstract—The rapid, global spread of COVID-19 has led to an unprecedented rise in

enrollments in online learning experiences among learners of all ages. In this article, we

explore the impact of the global pandemic on amassive open online course, Problem

Solving Using Computational Thinking, with a particular focus on the topics learners

chose for their final projects. The Computational ThinkingMOOCwas designed using a

project-based learning approach and aims to provide learners with an introduction to the

“big ideas” of computational thinking using a range of case studies that encompass topics

such as airport surveillance, epidemiology, and human trafficking. Beyond observing a

sharp increase in enrollment and engagement at the time the pandemic began, we discuss

ways inwhich the course’s project-based pedagogy allowed learners to bring their present
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experiences and concerns together with the course’s subject matter in order to meet the

learning objectives for the course. Many learners chose to address aspects of the

pandemic in the course’s final project and applied ideas about computational thinking to

peer-graded assignments that conveyed an individualized sense of importance and

urgency. We assert that this approach, along with the inclusion of a timely epidemiology

case study, enabled learners to more deeply internalize the role that computational

thinking can play in their own lives and in society as a whole.

& THE COVID-19 PANDEMIC has thrust online

learning environments into the global spot-

light. The sudden shift to emergency remote

teaching1 has forced educators and students to

adjust their educational routines using digital plat-

forms and even pedagogical approaches with

which they were previously unfamiliar.2 Schools

and universities have confronted this new reality,

while lifelong learners have sought new online

options for advancing their education.

One of the outcomes of these events has been

an unprecedented rise in enrollments in massive

open online courses (MOOCs), leading to a series

of publications on the subject.3 In this article, we

explore the impacts of the pandemic on one

MOOC: Problem Solving Using Computational

Thinking (CT). We give special attention to the

educational benefits of a pedagogical approach

that is rarely used in courses of this scale: project-

based learning (PBL). We identify particular bene-

fits of this approach that current events have

highlighted, andwe offer implications for teaching

CT in online settings.

COURSE DESCRIPTION

Audience and Scope

The CT MOOC was developed by an interdis-

ciplinary team from a large public university in

the Midwestern United States. The course was

designed for a target audience of precollege

learners and early college learners who intend to

pursue STEM careers and would thus need to

develop fluency in the computational tools used

in STEM. It aims to equip students with the

modes of thinking needed to set up problems

and potential solutions as a foundation for being

able to eventually use computational tools and

programming to address those problems.

Given this perspective, the course is based on

one particular definition of CT. CT has been

described and discussed in some form for

decades4, but it has received increased attention in

recent years, with an especially sharp rise in rele-

vant scholarship since 2015.5 The definition of CT

adopted in this course draws heavily on the work

of Wing,6 who presents CT as the practice of con-

ceptualizing problems, complementing and com-

bining mathematical and engineering thinking.

Wing6 argues that CT should not become a syno-

nym for computer programming and notes that

there are a range of skills necessary for CT, includ-

ing the ability to define problems, reformulate

seemingly intractable problems into solvable ones,

use abstraction and decomposition when app-

roaching a complex task, and usemassive amounts

of data and computation for problem solving.

While the CT MOOC similarly emphasizes the

problem solving aspect and many of the skills

that Wing highlights, it does so without requiring

learners to make use of actual data or computer

programming. In the course introduction, CT is

defined in the following approachable way.

“Before you can think about programming a
computer, you need to work out exactly what
it is you want to tell the computer to do.
Thinking through problems this way is CT.
CT allows us to take complex problems,
understand what the problem is, and
develop solutions. We can present these
solutions in a way that both computers and
people can understand.”

The goals of the MOOC, therefore, focus on

helping learners to specifically define and decom-

pose problems through abstraction while teach-

ing them to use insights from similar problems in

other domains to guide potential solutions.

Project-Based Pedagogy

This MOOC was designed around a “project-

based learning” (PBL) approach, which integrates

instructional activities within projectsmotivated by

students’ own interests and contexts.7 PBL is
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popular in K-12 classrooms, but there are ques-

tions of its utility in other settings, especially in

MOOCs, which typically adopt a didactic, lecture-

based format with instructional videos, quizzes,

discussions, and graded assignments. However,

some early work has found positive attitudes

among learners in a project-based MOOC and has

emphasized the importance of learner autonomy

in these contexts.8

The CT MOOC centers much of its pedagogy

around a final project in which learners identify a

problem to solve computationally, and then use

the knowledge and techniques they learned

throughout the course to iteratively develop an

algorithmic approach toward a solution. They are

asked to submit both a graphic organizer that dis-

plays the multiple iterations of their work and a

diagrammed algorithm of their final solution for

peer evaluation. This approach affords learners a

level of flexibility rarely found at the scale of

MOOCs since they are able to select the topic that

will define their final projects.

Using Case Studies to Shape Student Work

Using case studies is a way to ground CT in

real-life scenarios. This provides a concrete,

actionable foundation for CT that can more effec-

tively lead to learning, retention, and applica-

tion.9 For this purpose, the CT course revolves

around a series of three case studies.

Most pertinent here is the case on epidemiology,

which was incidentally developed before the events

surrounding the global pandemic. This case

presents a large, complex problem: how do we pre-

pare for the seasonal flu andmake surewe are ready

for the next pandemic? The expert who presents

this case—an associate professor of epidemiol-

ogy—breaks this down into a more specific sub-

problem and then walks learners through an

algorithm that centers around four categories of

people: vaccinated, susceptible, infected, and recov-

ered. Finally, a series of computational modeling

tools specific toepidemiologyareoffered to learners

interested in divingmoredeeply into this problem.

ENROLLMENT AND ENGAGEMENT
TRENDS

As a reflection of the recent spike in attention

that online education has garnered, the CTMOOC

experienced a sharp increase in enrollment

around the time that many countries began to

experience the full force of the COVID-19

pandemic. We found that most new learners who

reported their educational attainment and emp-

loyment status hold a bachelor’s degree and are

unemployed (see Figure 1). As expected, this sug-

gests that the rise in overall enrollments is likely

due to a combination of more people working

from home, universities shifting to remote teach-

ing, and rising unemployment rates.

Since MOOCs are notorious for having high

numbers of enrollments with few learners actually

engaging in the material or completing the course,

we also explored learner engagement trends, cal-

culated as the number of learners who completed

at least one item (lecture video, quiz, discussion

post, etc.) during the previous week. We discov-

ered an even sharper rise coinciding with the

spreadof the virus, suggesting an impressive surge

of learners actively engaged in course activities.

STUDENT FINAL PROJECTS
The course’s peer-graded final assignment

requires students to identify a location and natural

disaster—either hypothetical or real—and create a

preparation plan to address a specific aspect of this

disaster. The plan must involve the main elements

of CT described throughout the course, namely

problem identification, decomposition, pattern recog-

nition, and abstraction. Learners’ final submissions

consist of a descriptive problem statement, a

graphic organizer, and an algorithmdiagram. Exam-

ples of the wide range of disasters learners chose

include floods (by far themost common), cyclones,

earthquakes, tsunamis, tornadoes, anddroughts.

With the circumstances surrounding the global

pandemic influencing enrollment and engagement

in the MOOC, we were interested in whether its

impact would also be realized in topics learners

chose for their final projects. Furthermore, we

were interested in the specific problems that

learners identified related to the pandemic which

they deemed “solvable” using CT approaches.

Methods for Identifying Projects Related to the

Pandemic

In order to accurately measure the number of

final projects submitted and those related to the

COVID-19 pandemic, we first used a series of

Jupyter Notebooks to clean the data.We discarded
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a total of 61 projects that were missing attach-

ments, were exact duplicates of previously submit-

ted projects, or skipped by peer reviewers due to

incomplete submissions. This left us with 164 final

projects to analyze, submitted between November

18, 2019 (course launch date) andAugust 11, 2020.

To identify projects related to the pandemic,

we first extracted those that contained any of the

following words in their title or description:

COVID, corona, virus, pandemic, epidemic, Wuhan,

and social distanc(e). We then performed the

same search through all PDF, DOCX, and PPTX

project attachments. In total, we found 32 final

projects that related to the events surrounding

the pandemic.

Findings

The timing of pandemic-related final projects

clearly corresponds with the rise in coronavirus

cases outside of China, with the first related project

submitted on March 24th and quickly increasing

from there (see Figure 2). Since that date, 20% of

submitted projects have been related to COVID-19

in someway.

Wewere interested in exploring whether learn-

ers in regions that were first heavily affected by

Figure 1. Enrollments by educational attainment (top) and employment status (bottom).

Figure 2. Proportion of pandemic-related final project submissions over time (stacked).
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the pandemic, such as East Asia or Europe, chose

to write about the pandemic before others. How-

ever, we found that the first pandemic-related

project was submitted in the United States, fol-

lowed by India, Thailand, and then Germany, in

that order (based on self-reported demographic

data and tracked IP addresses).

As issues and problems surrounding the pan-

demic unfolded in real time, learners articulated

specific dimensions that could be addressed

using approaches advanced in the course. Some

of the overarching topics in these projects

include being wise about treatment, finding ways

to prevent further spread, dealing with life in

quarantine, managing school, and how to ade-

quately distribute resources to those most

affected. Interestingly, early projects weremostly

about deciding to enforce stay-at-home orders

and social distancing measures, while later proj-

ects largely focused on whether and when to

begin reopening society.

Some learners who chose to write about the

pandemic articulated that they recognized

COVID-19 did not cleanly fit within the category

of natural disaster.

“Rather than focusing on a “natural
disaster” like too much snow or flooded
streets, I have chosen COVID-19 since it has
limited people’s access to proper nutrition
and healthy diet.”

“COVID-19 is a pandemic the whole world is
talking about right now. This may not be a
natural disaster but is more effective than a
natural disaster.”

These excerpts—along with learners’ deci-

sions to choose a different path than instructed—

highlight the weight of the pandemic in their per-

sonal lives.

IMPLICATIONS AND CONCLUSION
Our findings in this case study have high-

lighted the benefits of a PBL approach to teaching

problem solving methods and skills such as CT.

Though providing learners with a high degree of

agency in online courses that are offered at scale

may not always be feasible, doing so can empower

them and help them establish personal ties to the

subject matter. This heightened level of buy-in

from learners, created through a combination of

greater autonomy and personal interest in the

subject, has been shown to lead to more robust

learning.10

In the case of the Problem Solving Using CT

MOOC, learners were able to choose project

topics closely related to their interests, their

experiences, and the large problems currently

on their minds. For those who chose to look at

the COVID-19 pandemic through a CT lens, we

expect that the ongoing nature of the problem

will lead to many additional opportunities to

reflect on the skills they have learned. We assert

that the PBL approach adopted in this course,

along with the inclusion of a timely epidemiology

case study, enabled learners to more deeply

internalize the role that CT can play in their own

lives and in society as a whole.
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A Comparison of
Quantum and Traditional
Fourier Transform
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Abstract—The quantum Fourier transform (QFT) can calculate the Fourier transform of a

vector of size N with time complexity Oðlog 2 NÞ as compared to the classical complexity of

OðN logNÞ. However, if one wanted tomeasure the full output state, then the QFT

complexity becomes OðN log 2 NÞ, thus losing its apparent advantage, indicating that the

advantage is fully exploited for algorithmswhen only a limited number of samples is

required from the output vector, as is the case in many quantum algorithms. Moreover, the

computational complexity worsens if one considers the complexity of constructing the

initial state. In this article, this issue is better illustrated by providing a concrete

implementation of these algorithms and discussing their complexities as well as the

complexity of the simulation of the QFT in MATLAB.

PRINCIPLES OF QUANTUM
COMPUTING
& QUANTUM COMPUTATION POSES a fundamen-

tally different framework than our more famil-

iar classical computation. Specifically, this is

due to the existence of qubits, as opposed to

bits, the fundamental components of comput-

ing. Whereas bits can only hold the binary
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values of 0 or 1, qubits can instead

hold a superposition of states. We use Dirac’s

bra-ket notation, which utilizes two kets analo-

gous to the classical states 0 and 1, to repre-

sent an orthogonal basis

j0i ¼ 1
0

� �
and j1i ¼ 0

1

� �
: (1)

A more generic qubit state is a superposition

of the previous basis states

jci ¼ x0j0i þ x1j1i (2)

where x0 and x1 are complex-valued amplitudes

obeying the relation

jx0j2 þ jx1j2 ¼ 1: (3)

It is important to clarify that such a superpo-

sition does not take a value “in between 0 and 1”:

instead, in accordance with the Born rule,1 a

measurement of the state of the qubit corre-

sponds to a binary value. The qubit has a proba-

bility jx0j2 to be found in state “0” and a

probability jx1j2 to be found in state “1.”

We can use the Kronecker tensor product to

construct the basis of a system comprised of

multiple (n) qubits. For example, the product

basis states of a four-dimensional (n ¼ 4) linear

vector space are

j0i ¼ j0i � j0i ¼
1
0
0
0

2
664

3
775; j1i ¼ j0i � j1i ¼

0
1
0
0

2
664

3
775 (4)

j2i ¼ j1i � j0i ¼
0
0
1
0

2
664

3
775; j3i ¼ j1i � j1i ¼

0
0
0
1

2
664

3
775: (5)

Given n qubits, the general state is a superpo-

sition state vector in a 2n-dimensional Hilbert

space

jXi ¼
Xj< 2n

j¼0

xjjji (6)

with
Pj< 2n

j¼0 jxjj2 ¼ 1.

Given an arbitrary state result of a computa-

tion, to measure one x coefficient j, one would

have to perform a projection on the correspond-

ing base vector

xk ¼ hkjxi ¼
Xj< 2n

j¼0

xjdkj: (7)

dkj is the Kronecker delta. This measurement

destroys the state and therefore only one coeffi-

cient (or one linear combination of coefficients)

can be known. To know more coefficients, one

would have to repeat the experiment that pro-

duced the original state. In other words, each

measurement only provides one xj of informa-

tion, and one thus has to performOðNÞmeasure-

ments to obtain all N coefficients to a certain

precision.

This is a point of major importance that will

affect our analysis of the quantum Fourier trans-

form (QFT).

To compute with qubits, one can form quan-

tum logic gates, which are analogous to classical

logic gates but instead operate on quantum

states. For example, the following gate H inputs

state jXi and outputs jY i

jY i ¼ HjXi: (8)

A more specific example would be the map-

ping of the basis state j0i to ðj0i þ j1iÞ= ffiffiffi
2

p
and

j1i to ðj0i � j1iÞ= ffiffiffi
2

p
which would be represented

by the one-qubit Hadamard matrix

H ¼ 1ffiffiffi
2

p 1 1
1 �1

� �
: (9)

Another common example would be the con-

trolled phase shift gate, a single-qubit phase shift

gate that will leave the basis state j0i unchanged
and map j1i to expðifÞj1i, for a phase shift f

(such that the probability of measuring either a

j0i or a j1i also remains unchanged).

In general, quantum gates are unitary opera-

tors that map the Hilbert space into itself. They

are time evolution operators and they thus con-

serve energy and information. Moreover,

although free quantum evolution requires no

energy, true quantum gates instead require

energy to operate, as one has to initiate and stop

the interactions. Additionally, because quantum

error corrections techniques make use of classi-

cal hardware, error correction is expected to be
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a major part of the energy budget in quantum

computing.

DEFINITION AND USE OF THE
CLASSICAL DISCRETE FOURIER
TRANSFORM (DFT)

Before we move on to the first quantum

algorithms, let us first examine the limitations

of classical computation via one particular

algorithm: the general number field sieve

(GNFS).

The GNFS is currently themost efficient known

classical algorithm for large integer factorization

(particularly for integers exceeding 10100).2 A gen-

eralization of the special number field sieve,

this algorithm works in subexponential time,

specifically of complexity O½expð1:9ðlogNÞ1=3
ðlog logNÞ2=3Þ�.

However, we compare it to one of the first

quantum algorithms to ever spark interest in the

field of quantum computation: Shor’s algorithm.3

Via fast multiplication algorithms,4 the algorithm

need only take quantum gates of order

O½ðlogNÞ2ðlog logNÞðlog log logNÞ�, thus being a

member of the bounded-error quantum polyno-

mial time complexity class.

One distinguishing feature of the Shor’s

algorithm is that it requires only a few

repeated measurements of the output state to

obtain the desired result such that one does

not need to know all the coefficients of the out-

put state. This is done via the quantum period

finding subroutine, which does not load classi-

cal data and evaluate a full vector but instead

finds the period by measuring the result of the

QFT multiple times, which will be valuable for

quantum speedup. In fact, basing factoring on

period finding by using the QFT is the great

innovation in Shor’s quantum factoring

algorithm.

In fact, there is an almost exponential differ-

ence between the complexities of the GNFS and

Shor’s algorithm, showing that quantum com-

puting is, in principle, capable of performing

tasks that no classical computer could ever per-

form: this phenomenon is often referred to as

quantum speedup. To better visualize this com-

plexity, Figure 1 graphs the number of opera-

tions as function of the input size.

LIMITATIONS OF CLASSICAL
ALGORITHMS

Before introducing the QFT, for clarity, we

define its classical counterpart: the DFT. The

DFT maps a sequence of N complex numbers

xx ¼ fx0; x1; . . .:; xN�1g into another sequence, yy ¼
fX0; X1; . . .; XN�1g, such that

yk ¼
XN�1

n¼0

xn � e�i2p
N kn; k ¼ 0; 1; 2; . . .; N � 1: (10)

Moreover, anN -point DFT is often expressed as

y ¼ Wx (11)

whereW is the DFT matrix

W ¼ 1ffiffiffiffiffi
N

p

1 1 1 1 . . . 1
1 v v2 v3 . . . vN�1

1 v2 v4 v6 . . . v2ðN�1Þ

1 v3 v6 v9 . . . v3ðN�1Þ

..

. ..
. ..

. ..
. . .

. ..
.

1 vN�1 v2ðN�1Þ v3ðN�1Þ . . . vðN�1ÞðN�1Þ

2
6666664

3
7777775
:

(12)

Here, v ¼ expð�2pi=NÞ is the primitive Nth root

of unity.

This mathematical operation is typically

implemented as an algorithm that minimizes the

number of elementary arithmetic operations,

which is known as the fast Fourier transform

(FFT).5 This reduces the complexity by directly

computing the DFT from OðN2Þ to OðNlogNÞ.6
Here, we will be using the Cooley–Tukey algo-

rithm7 to implement the FFT.

Figure 1. Scaling, represented by the number of

operations as function of the algorithm’s input size.

(This graph was normalized to start at the origin, with

SA denoting Shor’s algorithm.)
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The simplest implementation of the Cooley–

Tukey algorithm is the radix-2 decimation-in-time

(DIT) case, which divides a DFT of sizeN into two

interleaved DFTs with size N=2 for each stage in

the algorithm’s recursion; the next section exam-

ines an implementation of this method in MATLAB.

IMPLEMENTATION OF THE RADIX-2
DIT CASE IN MATLAB

The radix-2 DIT is a recursive algorithm, tak-

ing the following inputs: x, the relevant data, the

input data x and its size N ¼ 2n, and the stride z

(that is the distance in memory between conse-

cutive values of x; we are taking an initial value

of z ¼ 1).

A possible implementation of the algorithm

in MATLAB is as follows:

function d = DIT(x, N, z)
if N == 1
d(1) = x(1)

else
d(1:N/2) = DIT(x, N/2, 2*z)
d(N/2+1:N) = DIT(x+z, N/2, 2*z)
for k = 1:N/2
t = d(k)
d(k) =
t + exp(-2*pi*i*(k-1)/N)*d(k+N/2)
d(k+N/2) =
t - exp(-2*pi*i*(k-1)/N)*d(k+N/2)

end
end

end
In the function’s initial if statement, we

account for the trivial case wherein x is a single

element list; we thus set our output equal to the

first member of x (which will, of course, always

be equivalent to x).

In the else statement, we truly access the

essence of the algorithm by first setting the first

half of the output equal to the recursion of the

function with a halved N and a doubled z (thus

reiterating through the function until the elimi-

nation case is reached) and then setting the sec-

ond half of the output to the shifted input by z

with a halved N and a doubled z. Afterwards, we

interleave the two evaluations to get our full DIT.

This results in some interesting complexity anal-

ysis, which is reviewed in the following section.

EVALUATING THE COMPLEXITY ZOF
THE RADIX-2 DIT IMPLEMENTATION

The runtime of the input of our implementa-

tion need only depend on the size of our input,

N . Thus, we can describe this runtime via the

usage of some unknown function, T ðNÞ. As a

result, the total runtime of our DIT implementa-

tion can be expressed as T ðNÞ, and the recursive

computations in line 5 and 6 as T ðN=2Þ (since we

are merely reevaluating the function with a

reduced N). Finally, the runtime of the computa-

tions present in the final for loop is proportional

toN . However, since we are to evaluate the over-

all complexity of our algorithm, we can ignore

any such scaling factors and simply write N .

Therefore, we have

T ðNÞ ¼ 2T
N

2

� �
þN: (13)

Next, we can utilize the master theorem for

divide-and-conquer recurrences for a more con-

crete answer. The master theorem states that

for recurrence relations of the form T ðNÞ ¼
aT ðN=BÞ þ fðNÞ, we determine the critical expo-

nent ccrit ¼ log ba. Therefore, we utilize the case

of the master theorem stating that fðNÞ ¼
OðNccrit log kNÞ for any k � 0, since we merely

have ccrit ¼ log 22 ¼ 1 and we can thus simply set

k ¼ 0 such that log kN ¼ log 0N ¼ 1. Therefore, in

accordance to the master theorem, we deter-

mine the function as having complexity

T ðNÞ ¼ OðNccrit log kþ1NÞ ¼ OðN logNÞ: (14)

As expected, our implementation makes correct

usage of the Cooley–Tukey algorithm, showing

the aforementioned complexity.

DEFINITION AND USAGE OF QFT
Akin to the DFT that we examined in the sec-

tion “Evaluating the Complexity of the radix-2

DIT Implementation,” the QFT maps a quantum

state jxi ¼ PN�1
i¼0 xijii to

PN�1
i¼0 yijii in accor-

dance to the formula

yk ¼ 1ffiffiffiffiffi
N

p
XN�1

n¼0

xnv
nk; k ¼ 0; 1; 2; . . .; N � 1: (15)
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(We continue to use the notation of v as a

function of N : for further clarity, v ¼
expð�2pi=NÞ for N ¼ 2n.) Moreover, we can also

re-express the QFT in a way that will be easier to

simulate for our implementation,8 which repre-

sents our input as a tensor product of states like

so (here, s is used to better distinguish it from x)

jsi ¼ js1s2. . .sni ¼ js1i � js2i � . . .� jsni: (16)

We also borrow fractional binary notation such

that

½0:s1. . .sm� ¼
Xm
k¼1

sk2
�k: (17)

Therefore, we can express the QFT as

QFTðjsiÞ ¼ 1ffiffiffiffiffi
2n

p �n
j¼1

ðj0i þ e2pi½0:sjsjþ1...sn�j1iÞ:

(18)

More precisely, (18) represents a time evolution

operator constituted by the composition of n2

gates in parallel, some Hadamard gates, and

some controlled phase shift gates. Here, the

larger tensor product symbol functions as an

indexed product of the Kronecker tensor prod-

uct. Via decomposition, the QFT on 2n amplitudes

can be implemented as a quantum circuit consist-

ing of Oðn2Þ Hadamard gates and controlled

phase shift gates for a number of qubits n.

The previously classical DFT would, in our

implementation, require Oðn2nÞ gates, which is

exponentially greater than the aforementioned

quantum complexity. This may also be com-

pared with OðnlognÞ, the number of gates

required by the most efficient known QFT algo-

rithms for an approximate result.

This analysis, however, does not take into

account the complexity of preparing the input

state and measuring the output states, which

both have complexity OðN log 1=�Þ for a required

resolution �.9 It is therefore evident that in the

case of the best-known QFT algorithm, the com-

plexity is completely dominated by these meas-

urements. Furthermore, if one wants to read out

the full output vector the complexity becomes

OðN2 log 21=�Þ. The classical FFT algorithm also

has a dependence on the desired precision, but

we treat it as a constant depending on machine

precision, not considering arbitrary precision

implementations of the classical algorithm.

However, the complexity analysis of our simu-

lation on a classical computer will not be fully

accurate to the innate properties of a quantum

device. On a classical computer, we cannot

simulate the full QFT algorithm but we can simu-

late the application of the unary operator that cor-

responds to the QFT algorithm to one base state.

We first examine a gate-level accurate implemen-

tation that we may write in pseudocode. As

Figure 2 indicates, the QFT may be constructed

with Hadamard gates (written H) and controlled

phase shift gates (writtenRm).

In pseudocode, we may write

function QFT(s):
for i in 1..n:
H(s_i)
for m in 2{\ldots}{n-i+1}
R_m(s_i)

where Hð::Þ is an application of the Hadamard

gate and Rmð. . .Þ is an application of the con-

trolled phase shift gate as in

Rm ¼ 1 0
0 eif

� �

for some phase shift f. They both may be

thought of as operators acting in place on the

state si.

The above algorithm consists of two nested

loops therefore it has a complexity of Oðn2Þ ¼
Oðlog 2 NÞ.

Since each quantum gate can be simulated in

OðNÞ, and taking advantage of the possibility of

parallelizing some of the transformations

Figure 2. Quantum circuit drawn for the QFT for n

qubits.

November/December 2020 107



implemented by the gates, then we can simulate

the above circuit in OðN log 2 NÞ.
We provide a possible implementation of this

algorithm in MATLAB.y using the QUBIT4MATLAB10

library.

EVALUATING THE COMPLEXITY OF
THE QFT

In the previous section, we discussed the

running time of the gate-accurate description of

the QFT algorithm and proceeded to multiply

by N (the cost of simulating the gate for each

possible input) to obtain the gate-accurate sim-

ulation time.

We now discuss the complexity of (18) given

one input s. One way to implement (18) consists

of precomputing all required values of ½0:sj. . .sn�
(17) for each j. Since we have n possible values

of j and the sum has a complexity proportional

to n for each j, this operation has a total com-

plexity of n2.

We now consider the complexity of comput-

ing the Kronecker products in (18). This tensor

product is effectively just a form of multiplica-

tion: using the associative property, we see that

first product involves two vectors of size 2,

resulting in a vector of size 4. The second prod-

uct involves a vector of size 4 and a vector of

size 2, resulting in a vector of size 8. This contin-

ues to the final result of sizeN ¼ 2n.

Thus, we effectively sum over 2j as

Xj<n

j¼1

2j ¼ 2n � 1

2� 1
¼ 2n � 1 2 Oð2nÞ: (19)

To find the full complexity, we sum and take

the greater term: Oðn2 þ 2nÞ ¼ Oð2nÞ ¼ OðNÞ.
This possible implementation of the algo-

rithm is faster than the gate accurate simulation

previously discussed.

In principle, we takeN basis vectors to account

for arbitrary N coefficients, we should repeat

these calculationsN times. Yet, in practice, in sim-

ulation we are allowed to copy vectors therefore

this does not affect the overall running time.

In evaluating the complexity of our func-

tion, we are mostly concerned with the

complexity of the computations present in the

repeated Kronecker product. We can compute

its computational complexity in the simula-

tion; however, this complexity does not

appear in the (actual) quantum computer. We

can represent the differences between the

simulation and the true quantum computa-

tions as follows.

We start with our initial state X, i.e., a

superposition of base vectors. In the actual

computation, the calculation of each com-

ponent is parallelized at no cost but we

can only measure one coefficient. We

therefore need to rebuild the output state

N times in order to be able to perform the

N measurements needed to obtain all the

coefficients.

However, in the simulation, we must loop

through the 2n vector bases. As a result, the

computation to generate the output state

appears slower than the true quantum com-

putation. Yet, because we can copy this

state to perform multiple measurements,

the net complexity is not slower. This appar-

ent discrepancy is mostly due to the effect

of the Kroneker delta computation.

In true quantum information, we are only

capable of extracting one measurement at a

time. Thus, we compute every number 2n

faster than the solution. This forms a black

box which computes every coefficient of the

transform incredibly quickly: however, we

may only measure one coefficient or linear

combination of coefficients per each itera-

tion of the function (since the QFT’s wave

function will collapse every time we call the

black box, thus necessitating that the com-

putations be redone).

In a true quantum computation, there is no

cost in the Kronecker products discussed in the

previous section. If the QFT was implemented as

a series of Hadamard gates, this would require

n2 Hadamard gates (as was mentioned following

the definition of the QFT in the “Definition and

Usage of Quantum FOURIER Transform” sec-

tion). Each of the n2 ¼ log 2 N gates require

OðNÞ classical operations to be simulated, thus,

the total cost is OðN log 2 NÞ.
y
Source code of the algorithm in MATLAB may be found at https://github.com/

DamianRMusk/MATLAB_FT
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CONCLUSIONS
In Table 1, we can directly compare the for-

mulated algorithmic complexities (to write

terms in a uniform manner, we have reverted to

expressing complexities in terms of N ¼ 2n gates

for the quantum algorithms).

We can graph the complexities as shown in

Figure 3.

Accordingly, the complexities of our algo-

rithms are rather distinct. The exponential

(the DFT) increases far more rapidly than the

other functions, the product of the input and

the logarithm of the input (the simulated QFT)

lies in-between the others, with the squared

logarithm (the theoretical QFT) residing far

below the two other functions, increasing at an

almost linear rate: these visualized results fur-

ther bring the concept of quantum speedup

into question.

The previous results appear to confirm that

true quantum algorithms and mere simulations

of them have significantly different running

times. In the case of the QFT, this is mostly due

to the costliness of the iterated Kronecker ten-

sor product for an arbitrary number of basis

vectors. However, we arrive at the question of

whether or not these complexities can truly be

ranked directly. By the principles of quantum

information, to acquire results more compara-

ble to those given by the classical DFT, we

must make extra preparations to our black box

that, in turn, cost us a substantial amount of

computing power (potentially indicating that, in

actuality, the algorithms have comparable run-

times when evaluating the Fourier transforms

in full).

More specifically, if we want to measure each

coefficient, we must redo our operations for

each coefficient (since our wave function will

collapse for every measurement). This is not

necessary for the classical DFT; upon making

these modifications to the theoretical QFT such

that it becomes more analogous to the DFT, it is

possible that (in the case of Fourier analysis)

quantum computing is no better than classical

computing. However, this does not necessarily

mean that quantum speedup is nonexistent; in

the case of integer factorization, wherein we

only desire a single answer that meets are condi-

tions, the parallelization of quantum computing

can become extremely useful (as mentioned in

the Introduction in the case of Shor’s algorithm,

although this algorithm need only sample the

wave function to calculate prime factors). In

fact, this parallelization becomes beneficial for

any type of search problem given the appropri-

ate search criteria.11

The primary goal of this article was to pres-

ent the reader with a nontrivial example to

illustrate that directly comparing quantum algo-

rithms to classical ones is a significant issue

and there are a considerable number of poten-

tial hazards in doing so. Furthermore, in the

case of some quantum algorithms, the per-

ceived computational advantage may disappear

should all elements of the wave function need

to be read out, and there conversely exists

speedup potential if only some elements need

to be sampled. Therefore, although quantum

speedup is certainly real for a number of algo-

rithms, it is not necessarily a given.

Table 1. Our calculated complexities calculated by

applying various complexity analysis techniques to our

previously defined implementations. (“Sim” and “theo”

are abbreviations for “simulated” and “theoretical,”

respectively.).

DFT OðN logNÞ
QFT (gate-level accurate) OðNlog 2NÞ
QFT (theo, no measurement) Oðlog 2NÞ
QFT (theo + preparation + measurement) OðN2log 21=�Þ

Figure 3. Our complexities in the form of a MATLAB

graph, displaying the various forms of growth

between the relative size of an algorithm’s input and

its overall complexity. (We have regularized some

complexities to start at the origin.)

November/December 2020 109



ACKNOWLEDGMENTS
I would like to thank Professor Arthur Western

for his guidance while working under him at Pio-

neer Academics. Moreover, I would like to

acknowledge Lorena Barba and Matthias Troyer

for their very detailed feedback and suggestions.12

& REFERENCES

1. M. Born. TheStatistical Interpretation ofQuantum

Mechanics. Amsterdam, TheNetherlands: Elsevier, 1954.

2. C. Pomerance, “A tale of two sieves,” Notices Amer.

Math. Soc., vol. 43, pp. 1473–1485, 1996.

3. P. W. Shor, “Algorithms for quantum computation:

Discrete logarithms and factoring,” in Proc. 35th Annu.

Symp. Found. Comput. Sci., 1994, pp. 124–134.

4. D. Beckman, A. Chari, S. Devabhaktuni, and

J. Preskill, “Efficient networks for quantum factoring,”

Phys. Rev., vol. 54, pp. 1034–1063, 1996.

5. Y. Zhou, W. Cao, L. Liu, S. Agaian, and C. L. P. Chen,

“Fast Fourier transform using matrix decomposition,”

Inf. Sci., vol. 291, pp. 172–183, 1992.

6. M. Lohne, “The computational complexity of the fast

Fourier transform,” 2017.

7. A. Bekele, “Cooley–Tukey FFT algorithms,” 2006.

8. V. H. Tellez, A. Campero, C. Iuga, and G. I. Duchen,

“Quantum Fourier transform circuit simulator,” in Proc.

Nano Sci. Technol. Inst. Nanotechnol. Conf. Trade

Show, 2008, pp. 39–42.

9. V. Shende, S. Bullock, and I. Markov, “Synthesis

of quantum logic circuits,” IEEE Trans. Comput.-

Aided Des., vol. 25, no. 6, pp. 1000–1010,

Jun. 2006.

10. G. Toth, “Qubit4matlab v3.0: A program package for

quantum information science and quantum optics

for MATLAB,” Comput. Phys. Commun., vol. 179,

pp. 430–437, 2008.

11. L. Grover, “Quantum computers can search rapidly

by using almost any transformation,” Phys. Rev. Lett.,

vol. 80, pp. 4329–4332, 1997.

12. M. Troyer, “Review: A comparison of quantum and

traditional Fourier transform computations,” 2020, doi:

10.22541/au.159795474.47457948.

D. R. Musk is a student in Stanford Online High

School and interns as a software developer at

SpaceX. He participated in the Pioneer Academics

research program under the research concentration

“Fourier Series and Transforms with Applications in

Physics and Related Fields,” advised by Professor

Arthur Western. His main interests are computational

physics, theoretical physics, and discrete mathemat-

ics; he aspires to earn a Ph.D. in a related specializa-

tion. Contact him at damianmusk@gmail.com.

Computing Prescriptions

110 Computing in Science & Engineering

http://dx.doi.org/10.22541/au.159795474.47457948


SUBSCRIBE AND SUBMIT
For more information on paper submission, featured articles, calls for papers, 
and subscription links visit: 

www.computer.org/tbd

IEEE TRANSACTIONS ON
SUBMIT
TODAY

The IEEE Transactions on Big Data (TBD) publishes peer reviewed articles with big data as the main 
focus. The articles provide cross disciplinary innovative research ideas and applications results for 
big data including novel theory, algorithms and applications. Research areas for big data include, but 
are not restricted to, big data analytics, big data visualization, big data curation and management, 
big data semantics, big data infrastructure, big data standards, big data performance analyses, 

particular interest.

SCOPE



Corrections to “An
Exploration of Black
Students Interacting With
Computing College and
Career Readiness Vlog
Commentary Social
Media Influencers”
Robert T. Cummings

Morehouse College

Earl W. Huff

Clemson University

Naja A. Mack

University of Florida

Kevin Womack

Morehouse College

Amber Reid

Clark Atlanta University

Brandon Ghoram

Morehouse College

Kinnis Gosha

Morehouse College

Juan E. Gilbert

University of Florida

& IN THE ABOVE article,1 Earl H. Huff should have

been listed as Earl W. Huff. The correct author

list is shown above.

& REFERENCES

1. R. Cummings et al., “An exploration of Black students

interacting with computing college and career

readiness Vlog commentary social media influencers,”

Comput. Sci. Eng., vol. 22, no. 5, pp. 29–40, Sep./Oct.

2020.Digital Object Identifier 10.1109/MCSE.2020.3023864

Date of current version 9 October 2020.

ErrataErrata

112
1521-9615 � 2020 IEEE Published by the IEEE Computer Society Computing in Science & Engineering



Evolving Career  
Opportunities  
Need Your Skills
Explore new options—upload your resume today

Changes in the marketplace shift demands for vital skills and talent. The 
IEEE Computer Society Jobs Board is a valuable resource tool to keep job 
seekers up to date on the dynamic career opportunities offered by employers.

Take advantage of these special resources for job seekers:

No matter what your career level, the IEEE Computer Society Jobs Board 
keeps you connected to workplace trends and exciting career prospects.

JOB ALERTS

CAREER 
ADVICE

WEBINARSTEMPLATES

RESUMES VIEWED 
BY TOP EMPLOYERS

www.computer.org/jobs



Publish your work in the IEEE Computer Society’s fl agship journal, IEEE 
Transactions on Computers (TC). TC is a monthly publication with a wide 
distribution to researchers, industry professionals, and educators in the 
computing fi eld. 

TC seeks original research contributions on areas of current computing 
interest, including the following topics:

• Computer architecture
• Software systems
• Mobile and embedded systems 

• Security and reliability
• Machine learning
• Quantum computing

All accepted manuscripts are automatically considered for the monthly 
featured paper and annual Best Paper Award.

Learn about calls for papers and submission details at 
www.computer.org/tc.

Call for Papers: 

IEEE Transactions 

on Computers



Submit your paper today!
Visit  to learn more.

Get Published in the New IEEE Open 
Journal of the

Submit a paper today to the 
premier new open access 
journal in 

.

Your research will benefit from 

the IEEE marketing launch and 

5 million unique monthly users 

of the IEEE Xplore® Digital Library. 

Plus, this journal is fully open 

and compliant with funder 

mandates, including Plan S. 




	01-mcse-frontcover-fill-3020171-x
	02-mcse-cover2-fill-3028758-x
	03-mcse-masthead-fill-3020173-x
	04-mcse-contents-3020175-x
	05-mcse-fill-3028950-x
	06-mcse-barba-3027933-x
	07-mcse-fill-3028754-x
	08-mcse-west-3025398-x
	09-mcse-perilla-3020508-x
	10-mcse-fill-3028914-x
	11-mcse-li-3015511-x
	12-mcse-fill-3028756-x
	13-mcse-amaro-3024155-x
	14-mcse-randles-3024062-x
	15-mcse-reinert-3023288-x
	16-mcse-fill-3028755-x
	17-mcse-fill-3028757-x
	18-mcse-banas-2940656-x
	19-mcse-hack-3019744-x
	20-mcse-comba-3019834-x
	21-mcse-fill-3029987-x
	22-mcse-schuster-3019164-x
	23-mcse-leung-3020445-x
	24-mcse-pinto-3024012-x
	25-mcse-fill-3029988-x
	26-mcse-musk-3023979-x
	27-mcse-fill-3028927-x
	28-mcse-huff-3023864-x
	29-mcse-fill-3029985-x
	30-mcse-fill-3029986-x
	31-mcse-cover3-fill-3020177-x
	32-mcse-cover4-fill-3028949-x


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


