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In this chapter, we provide an overview of the research and practice in visual 

analytics with a specific focus on decision-support systems that facilitate  

generating useful information from big, unstructured, and complex data. We 

first define what is usually referred to as big data and its unique characteristics. 

We then define visual analytics and human–computer collaborative decision- 

making (HCCD) environments, compare and contrast human-in-the-loop 

analysis methods with automated algorithms such as machine learning models, 

and explain how these approaches complement each other for real-world prob-

lem solving. To ground our discussions, we provide an overview of four exem-

plar visual analytics systems with applications in various domains, including 

humanitarian relief, social media analytics, critical infrastructure vulnerabil-

ity modeling, resource allocation, and performance evaluation using multi

dimensional data.

MOTIVATION AND OPPORTUNITY

Advanced analytics and computational algorithms enable the transformation 

of the evolving deluge of digital data into useful and actionable information. 

However, as data sets continue to increase in size and complexity in the digital 
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age, analytics become more computationally demanding, time consuming, and 

less clear to human analysts, and the analytics output produces large amounts 

of information that can overwhelm the human user. Some complex algo-

rithms, such as machine learning models, are designed to reduce the massive 

amounts of complex data to manageable sizes and dimensions. However, the 

complexity and, at times, lack of transparency of the algorithms result in 

humans being unable to understand and trust the results (Burrell, 2016). 

This contradicts the original value of computing, as noted by Hamming (1962): 

The ultimate purpose of computing is to gather insights into the dynamic 

processes of the world instead of merely generating numbers.

These problems are exacerbated with big data, where the data is large or 

complex in one or more of three aspects: volume (size), variability (number 

of variables or types of data), and velocity (rate of incoming data—e.g., real-

time, streaming; Zikopoulos & Eaton, 2011; see Chapter 2, this volume). Big 

data poses additional challenges for analysis techniques and human ability 

to synthesize, explore, and distill big data into significant and relevant infor-

mation. Visualization that is combined and interlinked with data analytics 

can help alleviate these challenges. Moreover, visualization that is integrated 

within the analytics pipeline can help confirm the expected and discover the 

unexpected (Thomas & Cook, 2006). As pointed out by Tay et al. (2017), 

visualization is key to solving many big data analysis problems if the follow-

ing four issues are carefully considered in the design: (a) identification (iso-

lating and highlighting relevant data and patterns), (b) integration (combining 

different data sources and different models to reveal new insights), (c) imme-

diacy (streaming, real-time, and time-sensitive data), and (d) interactivity 

(user manipulation and exploration to inductively uncover and identify new 

patterns). The field of visual analytics expands on previous work in these 

areas to assist researchers, analysts, and decision makers in their use of data for 

effective discovery, monitoring, analysis, and decision making. In this chap-

ter, we explore the background, potential, challenges, exemplar techniques, 

and applications of human-guided big data visual analytics, specifically in 

HCCD environments.

WHAT IS BIG DATA?

The term big data has emerged in the last decade to describe data that can be 

characterized by large volume, variety, or velocity (Zikopoulos & Eaton, 2011). 

Volume, intuitively, refers to the large size of the data that have to be stored, 

queried, analyzed, and visualized. Large volumes make storing and querying 

on traditional system architectures challenging. Infrastructures such as Apache 

Hadoop1 are used to distribute computational operations on a network or 

cluster of computers to enable processing large amounts of data. Modern 

1https://hadoop.apache.org/
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graphical processing units (GPUs) also enable speeding up compute-intensive 

algorithms by parallelizing computations simultaneously into hundreds of 

thousands of computational threads. Approximate query techniques in visual 

analytics (Fisher, Popov, Drucker, & Schraefel, 2012; A. Kim et al., 2015) enable 

interactive data exploration by reducing the data volume in the computation 

process and providing users approximate results with bounded errors.

Variety in big data refers to the heterogeneity of the data being collected, 

such as text, numeric, geographic location, and temporal data. Different data 

structures that are collected at different speeds and sampling rates make draw-

ing connections and identifying patterns a challenging task, and traditional 

automatic data analysis makes the fusion of information hard, whereas visual 

analytics systems take advantage of human ability to find patterns and iden-

tify connections.

Velocity refers to the speed at which data is being collected (e.g., streaming 

social media data). Data collected at streaming rates require methods with 

low computational complexity that can process the incoming data at the same 

speed. Visual interfaces should be able to use open (and usually two-way, 

between the user interface and the server) communication technologies such 

as WebSocket2 to seamlessly update the user interface with incoming data (or 

the real-time result of analysis and processing of the incoming data) to enable 

visual analytics of data with high velocity.

Big data includes items that are interdependent, such as social network data 

with links including follower and followee, repost, quote, spatial proximity, or 

topical relatedness. Interdependence of data items are usually recorded in 

different data structures with different analytical needs (e.g., social network 

data or spatial coordinates data for social media users and posts), making pure 

computational analysis more challenging. Humans, however, can find patterns 

and relationships in heterogeneous data while connecting it to the context 

that might not necessarily be captured in data, especially if human users are 

presented with appropriate visualizations.

WHAT IS VISUAL ANALYTICS?

Visual analytics is defined as the science of analytical reasoning facilitated by 

interactive visual interfaces (Thomas & Cook, 2006). Visual analytics enhances 

the cognitive abilities of humans by maximizing the use of their perceptual 

and cognitive capabilities in an integrated visual analysis and exploration 

environment (Eick & Wills, 1993; S. Kim et al., 2013; Stasko, Görg, & Liu, 

2008; Zhao, Chevalier, Pietriga, & Balakrishnan, 2011). The primary goal of 

visual analytics is to provide insight into various phenomena to enable more 

effective research, analysis, and decision making. As data size and complexity 

have grown in the era of big data, the role of visual analytics has become 

2https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
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increasingly important. HCCD environments effectively and efficiently combine 

the experience, contextual information, and expertise of the human user 

with the power of human-guided computational analysis, which, in turn, 

enhances the human-centered decision-making process.

Visual analytics is the intelligent evolution of visualization, bringing the 

fundamental understanding of perception and human cognition used in visu-

alization to the realm of analysis of data using and through interactive visual-

ization, instead of merely using visual techniques to communicate the analytical 

results to users. To achieve this, visual analytics incorporates the principles of 

design and cognitive science to identify appropriate visual metaphors for data 

or analytical results, with a strong emphasis on creating perceptually effective 

representations at the appropriate cognitive level for each analytical task (see 

the examples in the Opportunities and Examples subsection).

As discussed earlier, new analytical techniques and technologies are being 

adopted to gain insights and steer decision making in various fields, leveraging  

the vast amounts of complex data, which are growing at exponential speeds 

since the emergence of the Internet. In particular, machine learning and arti-

ficial intelligence algorithms are being applied to generate information from 

data and predict future states. Generally, these methods involve sophisticated 

calculations and numerous input parameters. Visual analytics helps incorpo-

rate human domain knowledge through the users’ iterative refinement of 

inputs using visual interfaces to improve the calculated results. More impor

tant, without visual techniques, it is difficult and at times impossible (depend-

ing on the models used) for users to understand the causality relationship 

between inputs and derived results. Oftentimes, users may suspect the reli-

ability of the generated results due to the overly complex design of the algo-

rithms. Visual analytics can bridge the gap between the results derived by 

these automatic algorithms and reasonable interpretation through model- 

integrated visualization techniques. In other words, visual analytics not only 

improves data analytics (through the incorporation of human domain knowl-

edge, expertise, and analytical abilities) but also increases trust in, and there-

fore, the adoption of, the analytical results.

The usefulness of a visual analytics system can be characterized by its utility 

and usability (Ellis & Dix, 2006). Utility refers to the ability of the system to 

support users in completing the required tasks, and usability describes the ease 

of use of the system in completing the same required tasks. Therefore, utility 

is more or less an objective measure, whereas usability is related to the sub-

jective satisfaction and user experience, describing the success of a system in 

terms of intuitive design, ease of learning, efficiency of use, and memorability 

(Usability.gov, n.d.-a). To ensure a system’s utility and usability, visual analytics 

researchers usually adopt the user-centered design paradigm (Usability.gov, 

n.d.-b), and work closely with stakeholders at various stages of design and 

development. User-centered design usually entails identifying the context of use, 

specifying requirements, and creating design solutions. This last stage itself is 

typically an iterative process in which multiple design ideas are presented to 

users (via sketches, mockups, or actual implementations of the system), 

feedback is sought and intermediate “formative” evaluations are conducted, 
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leading to refining the design and presenting the system again for more feed-

back (Roth, Ross, & MacEachren, 2015). After a system implementation is 

finished, researchers conduct final “summative” evaluations through various 

evaluation protocols (Ellis & Dix, 2006) to scientifically report on the usability 

and/or utility of the system (for the particular target purpose and particular 

target users).

Visual analytics has been successfully applied and reported on to support 

(a) advance research and scientific activities or (b) domain users for practical 

needs outside academia or industry. For instance, MacEachren, Stryker, Turton,  

and Pezanowski (2010) reported on HEALTH GeoJunction, a visual analytics 

application for exploring health-related scientific publications using place–

time–theme queries (e.g., studies about Ebola in Africa in 2010). Diakopoulos, 

Naaman, and Kivran-Swaine (2010) created and evaluated a system for 

journalists to sift quickly through large amounts of social media traffic about 

events of interest to identify public sentiment. Wade and Nicholson (2010) 

reported on the successful use of visual analytics in the aviation safety engi-

neering industry, leading to changes in flight training manuals. Jaiswal et al. 

(2011) used GeoCAM in computational linguistics research to interpret 

human-generated route directions. Karimzadeh, Pezanowski, MacEachren, 

and Wallgrün (2019) described the successful application of a semiautomatic 

visual analytics platform to create annotated textual data sets (Wallgrün, 

Karimzadeh, MacEachren, & Pezanowski, 2018) to support the development 

of automated algorithms for geolocating (i.e., mapping) textual documents. 

Wagner et al. (2019) reported on the successful evaluation and application of 

KAVAGait, a system for clinicians to support clinical analysis of patients’ gait 

using complex data sets while incorporating clinicians’ domain knowledge. 

Throughout the rest of this chapter, we also address the design and capabil-

ities of a few other visual analytics systems, elaborating on their use by 

end-users.

VISUAL ANALYTICS TO TACKLE BIG DATA

Traditional big data analytics may leave out some context in modeling the 

complex world. Data is rarely complete, and it does not incorporate all the 

relevant information necessary in decision making (Brooks, 2013). Decision 

making (by humans) always happens within context; policy makers or execu-

tives rarely rely merely on numbers to make decisions. They contextualize ana-

lytical results within the broader context of society, risks, and long-term 

outcomes and, at times, may even go against the analytical (quantitative) results 

to have more favorable broader impacts when considering every aspect that 

may not be reflected in analysis. Visual analytics enhances computational 

algorithms by incorporating humans’ extensive information, experience, and 

domain knowledge that may not be collected in the data used for analysis.

Further, data analysis relies heavily on quantifiable data. For instance, in 

population dynamics modeling, projections of the population in the future are 

generated on the basis of the spatiotemporal measurements and dynamics 
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of the current population (Uhl et  al., 2018; Zoraghein, Leyk, Ruther, &  

Buttenfield, 2016). Qualitative information, fuzzy data, and social aspects 

(decisions, emotions, connections, or opinions), although intuitive to humans, 

are difficult and, at times, impossible to quantify and analyze. As another 

example, novel sentiment analysis methods may underperform in determin-

ing the affective states and subjective information of statements that include 

exaggerations, sarcastic remarks, jokes, and negations (e.g., “The whole house 

is flooded. How great!” may confuse a sentiment detection algorithm because 

the author is using great sarcastically). Such naive cases are easier for human 

readers to identify; therefore, humans in the loop can improve the computa-

tional results and alleviate the potential of biased results.

Big data introduces another challenge in data analysis: As the number of 

data items increases, so does the number of statistically significant relation-

ships. Many of such significant relationships may be misleading or irrelevant. 

This overwhelms an analyst’s ability to find meaningful relationships due to  

a high ratio of noise to signal. Visual analytics provides interactive querying, 

sorting, detail on demand, and contextual information to help users focus on 

actionable data and patterns that matter the most.

Finally, real-world big problems are complex and multifaceted with multi-

ple parameters and interdependencies. Whereas in classic statistics, a con-

trolled or observational study is conducted, many real-world problems cannot 

be solved by trial and error or analysis of retroactive observations, and results 

from one experiment are not generalizable to another case. For instance, no two 

natural events are the same. No “earthquake drill” can simulate the impacts 

of an earthquake; therefore, traditional data analysis cannot be used to simu-

late the impacts of one event. Real-time, context-enabled, multifaceted sensing, 

modeling, and decision-making environments are necessary for human users 

to evaluate and respond to any specific earthquake and natural disaster.

CHALLENGES IN USING MACHINE LEARNING

Machine learning-based approaches have certain limitations for use in some 

real-world problem-solving scenarios, where visual analytics is well-positioned 

to make significant contributions. In this section and the next one, we review 

the potential and limitations of machine learning and point out situations in 

which visual analytics can help remedy some of the limitations for real-world 

use cases.

Machine learning approaches can be generally categorized into supervised 

or unsupervised learning methods (Alpaydin, 2009). In supervised learning, a 

model is trained with labeled data for different prediction tasks such as classi-

fication (e.g., pictures classified into “dog” or “cat” categories) or regression. The 

goal of supervised learning algorithms is to find the relationships or structures 

in the input data that allow a model to generate correct output labels. These 

correct outputs are determined according to training data. Training data includes 
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examples for which input and output are known, usually through the process 

of human manual annotation of input data (e.g., labeling a cat picture with 

cat). The way the training data is sampled and the method using it is anno-

tated influence the generated automated models and may introduce the sam-

pler’s assumptions or bias, especially if such a sample represents a snapshot in 

time, space, or event type. Most important, training data that do not reflect 

the real world may lead to erroneous results that may go unnoticed (unless 

the assumptions and results are visually displayed to users with domain 

knowledge), and any sampling, by nature, introduces the biases and percep-

tions of the samplers (Wallgrün et al., 2018). Furthermore, dynamic phenom-

ena, such as various characteristics of human behavior, do not lend themselves 

to a one-off training of a machine learning model because such characteristics 

change due to human agency and interdependence of actions. Models gener-

ated for one particular event, time, or place may not work as well in other 

places. Overfitting to training data is always a challenge, too, meaning that 

the model can predict excellent results for the test data set but not for unseen 

input data.

Machine learning, like traditional data analysis, may struggle to model 

human and social contexts that cannot be easily collected in data and, there-

fore, lacks the ability to generate the narratives that a human analyst can 

produce using sequences of events, external forces, their relationships, and 

context. Once such context changes, machine learning algorithms still per-

form according to the initial model training, whereas humans can base their 

understanding on the existing model results but also draw the necessary con-

nections with the new context, identify the potential differences and signifi-

cance in the outcome, and make appropriate inferences or decisions.

Unsupervised learning does not require labeled data or pretrained models. 

Instead, the training algorithm directly learns from current data. For exam-

ple, the K-means clustering algorithm finds the natural categories of data by 

maximizing “within-cluster” similarity and minimizing “inter-cluster” simi-

larity. It can be used, for instance, to identify clusters of grades earned in a 

class (i.e., the natural grouping of grades that are similar to each other). Still, 

K-means requires the upfront knowledge of the number of clusters (informa-

tion that humans with domain knowledge may have a better understanding 

of, even in the case of some unsupervised methods that can identify a purely 

computationally optimum number of clusters). Also, the generated clusters 

are shifted significantly if outliers exist in the data. Again, humans, if equipped 

with the right tools, visuals, and information, are more reliable at identifying 

erroneous outliers or natural extreme values depending on the context.

Regardless of whether supervised or unsupervised methods are used, human 

involvement can ensure relevant results for changing context or dynamic 

phenomena. Visual analytics provides the infrastructure for human experts to 

adjust input and hyperparameters (e.g., model configurations and structure, 

as in Das, Cashman, Chang, & Endert, 2019), monitor a model performance (for 

precision or speed, as in Zhao et al., 2019), compare results against context, 
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and correct the erroneously generated output labels to provide real-time 
examples for online (real-time) learning (e.g., retraining or incremental train-
ing of models, where new labels are used to improve the existing models, as in 
Snyder, Lin, Karimzadeh, Goldwasser, & Ebert, 2019). Most important, visual 
analytics enables the use of machine learning within what-if scenarios, where 
users can see the outputs based on different input parameters that reflect dif-
ferent human decisions, assumptions, or policies. We describe examples of 
such cases throughout the rest of this chapter.

THE DEEP LEARNING PROMISES AND OVERPROMISES

Deep learning is a specific type of artificial neural network with many layers 
(thus called deep) that has partly been revitalized due to the recent advance-
ments in hardware (LeCun, Bengio, & Hinton, 2015). Specifically, input values 
(e.g., pixel values in images) are multiplied by weights (which are ultimately 
optimized) and added many times with constants to generate the desired out-
put values (e.g., digit labels for images containing handwritten digits). With 
the advent of strong GPUs and even commercial deep-learning accelerators 
(e.g., Nvidia DGX-1), it is possible more than ever to apply deep learning to 
various domains for classification purposes. Deep learning has provided much 
better performance in some fields such as computer vision and has shown 
great promise in other domains, such as natural language processing, though 
not to the same level of maturity yet.

Deep learning relies heavily on large amounts of training data. The gold 
standard (ground truth) examples are used in optimizing the weights and 
constants in the neural network and generating a model that can predict 
labels for the “testing” data with acceptable accuracy (and, therefore, unseen 
data). Testing data also usually are manually annotated by humans to ensure 
that the generated models can produce labels for examples that were not 
used during the training phase of optimization.

Deep learning models require a high number of training examples for 
acceptable outputs (much higher compared with statistical machine learn-
ing), given that many weights and constants in all the layers have to be opti-
mized. In other words, deep learning models’ performance depends heavily 
on training and testing gold standard data, which is neither cheap nor easy to 
generate. However, as introduced in the previous section, training and testing 
data may only represent a snapshot of a time, space, phenomenon, or event; 
for example, a traffic congestion detection model that works for particular 
modes of transportation may suffer inaccuracies if new modes of transporta-
tion are introduced or new policies are put in place. Building up a new repre-
sentative training data set is costly and laborious and, again, would only 
capture the variation of the real world made on hard assumptions of sampling 
at the time.

In certain scenarios, deep learning alone may suffer from the issues dis-
cussed in the previous section: the inability of users to adjust input parameters 
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dynamically (to account for what-if scenarios of dynamic phenomena that 
need flexible inputs), detaching results from the context, and being specific to 
the training data instead of accommodating spatial or temporal variability 
in the phenomenon. Visual analytics systems integrated with online learning 
models provide a great opportunity for alleviating these problems. We discuss 
systems adopting this approach in the following sections.

EXPLAINABLE ARTIFICIAL INTELLIGENCE

Deep learning models are essentially classification methods, where input  
values are mapped to output values or labels. Unlike traditional statistics, deep 
learning models are not geared for “explaining” the relative importance or 
significance of input parameters, and therefore, deep learning models are not 
“explanatory.” For instance, a simple linear regression model can explain the 
contribution of the “number of cars” or “price of gas” (as independent vari-
ables) to the “number of traffic jam incidents” (as the dependent variable). 
After the regression model is solved, the analyst can examine the generated 
coefficients and significance values of independent variables and infer how 
much a unit increase—for instance, in the price of gas—would translate into 
a decrease (or increase) in traffic jams and if that value is in fact significant. 
Deep learning models, however, primarily focus on predicting the number of 
traffic jams without directly explaining the relative contribution of indepen-
dent variables. This poses a problem for decision makers and policymakers 
who do not just have to use the classification system but have to understand 
the underlying phenomenon for planning and policy making.

Moreover, a user’s ability to trust the conclusions of machine learning 
models may be affected negatively by the lack of transparency in the models. 
Although deep learning and other statistical machine learning models have 
made significant progress on many challenges, many are opaque black boxes 
with limited explanatory capabilities.

Explainable artificial intelligence (XAI) is an emerging field of research 
that seeks to enhance traditional machine learning techniques with explana-
tory metrics. For instance, current classification models and neural networks 
can be difficult to understand and unclear with regard to how classification 
and clustering decisions are made. In other words, it is unclear which specific 
characteristics of the input data (or independent variables) cause an item to 
be classified into a certain class. As a result, users may struggle to trust AI 
outputs. XAI seeks to address this problem by providing explainable models 
that directly indicate what decisions were made and why, allowing users to 
more effectively understand and act on the models’ outputs (Gunning, 2017). 
Such explanatory models can be presented and generated in many forms. For 
instance, some approaches use auxiliary integrated machine learning models 
that seek to identify the discriminatory features of input data (that distinguish 
a certain class) and assign a natural language or visual cue to such discrimina-

tory features, effectively explaining (in human language or visual cues) what 
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specific parameters in the input data led to the machine learning model deci-

sion. Such approaches either use ground truth training data that humans 

have annotated with both labels and (natural language or visual) explana-

tions of the discriminatory features (Rajani & Mooney, 2018) or automati-

cally harvested corpora of such explanations (e.g., image captions sourced 

from the web; Venugopalan, Hendricks, Mooney, & Saenko, 2016).

Other XAI approaches leverage interactive visualizations to focus on the 

computational components of a machine learning model with the goal of 

(a) increasing performance through hyperparameter3 optimization or (b) reduc-

ing the computational time necessary for computation-heavy models (Zhao 

et al., 2019). Such models do not necessarily need extra annotated explana-

tions for training. Instead, they focus on model parameters, model structure, 

computation time for each stage, bottlenecks, or functions that lead to higher 

model performance (Kahng, Andrews, Kalro, & Chau, 2018; Wongsuphasawat 

et al., 2018).

HUMAN–COMPUTER COLLABORATIVE  
MACHINE LEARNING FOR BIG DATA

In the first half of this chapter, we discussed the importance of human involve-

ment in analytical tasks to incorporate domain knowledge, social and changing 

context for dynamic phenomena, adjusting input variables, and monitor-

ing model performance. However, human involvement in big data analytics 

problems can be beneficial from a computational standpoint, as well. Pro-

cessing the entire big data to get accurate results could be a lengthy process, 

even with advanced computational architectures that use more computa-

tional resources, because the growth of data has significantly surpassed that 

of hardware resources (Mozafari, 2017).

Involving humans in big data analysis can reduce computational latencies 

efficiently and effectively because, in many situations, approximate results of 

analysis on fewer representative data points can satisfy the analytical require-

ments of end users (Fisher et al., 2012). One preliminary experiment (Wu & 

Nandi, 2015) indicated that a query to estimate the average of a data set can 

eliminate the need for sampling 104 more data through a reduction in the 

perceptually perceived error by 10−5. Researchers across both the database 

and visualization fields have devised a series of approximate query methods 

and integrated visual analytics approaches to facilitate the decision making of 

end users using approximate query processing. Researchers in the database 

field have explored novel approximate data query techniques to generate 

samples with the specific consideration of human perception of the generated 

samples. For instance, Park, Cafarella, and Mozafari (2016) proposed a spatial 

3Hyperparameters is a model configuration parameters (e.g., number of hidden layers 
in a deep learning approach) whose value is set before the learning process.
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sampling method that improves the perceptual accuracy of generated visual-
izations. In a similar vein, Ding, Huang, Chaudhuri, Chakrabarti, and Wang 
(2016) proposed an approach to assist end users in specifying the approx-
imate query accuracies in “Group By” aggregation queries (in which an 
approximate aggregate of an attribute for several data items is retrieved).  
A. Kim et al. (2015) advocated a ranking-aware sampling method to generate 
data samples through which approximate results of “Group By” queries keep 
the same ranking order as the exact results from the analysis of the entire data.

In the visual analytics field, a series of proposed approaches allow end users 
to analyze big data through providing quick approximate results using fewer 
data items and progressively improving the accuracy of the analytical results 
until the accuracy satisfies the analytical requirements (Fisher et al., 2012; 
Mozafari, 2017). Considering the uncertainty of approximate results for end 
users to make decisions, these visual analytics approaches assist end users to 
understand better the accuracy of approximate results via customized visual 
designs that encode statistical measurements of approximate accuracies. In one 
of our preliminary works in this area, for instance, we proposed a user-driven 
spatiotemporal big data sampling approach for data residing in remote servers 
(Wang et al., 2017). Through the well-designed spatial and temporal data 
indexing, our method focuses on data within the spatial and temporal query 
ranges expected by users to avoid sampling data outside the query range as 
much as possible. As a result, a visual analytics system built on this approach 
loads data from the servers in real time and reduces data transfer and sam-
pling latencies.

Aside from improving the computation time, human-in-the-loop machine 
learning can help circumvent the need for training data. Attributed to the 
mixed-initiative user interfaces, these approaches seek to aid the interactive 
visual exploration process through a combination of machine learning and 
user domain knowledge. The premise is to enable users to provide interactive 
feedback to the system for retraining the underlying machine learning model 
parameters (Badam, Zhao, Sen, Elmqvist, & Ebert, 2016; Wall et al., 2018). 
Users play a central role in guiding the workflow, and auxiliary machine learn-
ing algorithms provide shortcuts by generating candidate results from which 
users can choose. Over time, the mixed-initiative visual analytics systems 
leverage newly added (e.g., sensed) data and user feedback into the simulation 
models (active learning). The interoperation of data and the various machine 
learning models, along with user feedback, enhances the underlying models 
and reduces the overall reliance on the need for additional data.

Mixed-initiative visual analytical systems use direct human-user manipu-
lation of the desired results to update the parameters of automatic computa-
tional models through interfaces while trying to achieve fluid interactions to 
represent cognitive processes with externalized cognitive artifacts (Elmqvist 
et al., 2011; Horvitz, 1999). Users can investigate the model outputs dynami-
cally and iteratively. The analysis process is a reasoning procedure that involves 
information foraging, formulating hypotheses, and validating results. The 
system provides instant feedback based on user input. Thus, users have 
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opportunities to correct their outcome if the results do not match their 

expectations. However, it is challenging to understand users’ actions through 

learning of trivial and repetitive user interactions. Human-in-the-loop and 

mixed-initiative visual analytics create new opportunities to collect user 

behavioral information (e.g., eye gazing, mouse interactions) and analyze that 

information with machine learning algorithms to understand the semantics 

of the interactions (intention of performing a specific interaction; Endert, 

Chang, North, & Zhou, 2015) or predict future interactions (Heer, Hellerstein, 

& Kandel, 2015).

It is important to recognize that the human-in-the-loop may introduce 

their own biases in the analysis process. The core idea central to visual ana-

lytics is to use the complementary powers of humans and machines. Thus, it 

is imperative that bias is quantified, visualized (i.e., externalized), and present 

to the human user as much as possible. For instance, Zhao et al. (2019) dem

onstrated how an expert human user could modify the features and (hyper)

parameters in machine learning models and view the resulting accuracies on 

the fly with the ultimate goal of selecting optimal models, which are results 

of data-driven models and the human’s contextual knowledge. In such a 

scenario, if the human user relies too much on their assumptions (i.e., a 

misconception on strong discriminatory power of a certain hyperspectral 

index), the resulting performance drop—as quantified and visualized by the 

system—indicates to the users that their knowledge is biased or not applica-

ble to the current context. Related to the idea of bias and systematic errors is 

that visualizing uncertainty is an active area of research that strives to address 

the positivist aspects of visualization by explicitly conveying the risks ensu-

ing in the use of imprecise data or human-introduced errors during analysis 

(Spiegelhalter, Pearson, & Short, 2011), using which users can steer the analysis 

and decision-making path.

HUMAN–COMPUTER COLLABORATIVE  
DECISION-MAKING ENVIRONMENTS

An HCCD typically consists of an interactive front-end application (through 

which the user interacts with the system), as well as data-driven and model- 

integrated back ends. HCCDs usually include simulation capabilities for what-if 

scenarios that enable end users to see the outcomes, patterns, and trends in 

the information based on the decisions and assumptions they introduce into 

the system. In this section, we describe exemplar systems that exhibit HCCD 

characteristics with simple integrated models.

The Visual Analytics for Simulation-based Action (VASA) system (Ko et al., 

2014) shown in Figure 7.1,4 is a visual analytics platform for modeling the 

4The images in this chapter were generated in systems that use color, though they  
are printed in black and white here. For color images with more information,  
see http://pubs.apa.org/books/supp/woo
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7This figure shows the simulation of the landfall of Hurricane Irene in North Carolina. In this simulation, power generation units are hit by up to 34-knot winds. The 

hurricane proxy estimates the impacted restaurants and distribution centers. The system also allows identifying the power outage areas and out-of-service roads, 
which can be used in computing new food delivery paths. This image was generated in a system that uses color, though it is printed in black and white here. For a 
color image with more information, see http://pubs.apa.org/books/supp/woo

FIGURE 7.1.  VASA System Overview, With Calendar View on the Left, Event View on the Top, Map (Geographical) View in the Center, and 
Advanced Filtering and Querying Panels on the Right (Ko et al., 2014)
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impact of various kinds of threats (e.g., natural threats such as hurricanes or 
human-caused threats such as cyberattacks) on critical infrastructure, such as 
supply chain systems, road networks, cyber networks, and power grids. VASA 
includes a set of components encapsulating high-fidelity (i.e., realistic) simu-
lation models for each type of threat and infrastructure that together form a 
system of systems of individual simulations.

VASA (Figure 7.1) provides a critical infrastructure module that allows ana-
lysts to identify vulnerabilities in critical infrastructures (e.g., maritime supply 
chain networks, power plants, management command centers) in case they 
are compromised by adverse elements (e.g., cyberattacks). This component, 
shown in Figure 7.2, models a hierarchical network (e.g., power grid, supply 
chain), where the nodes (e.g., power generators) are connected with edges 
(e.g., transmission lines). This model simulates the impacts of the closure of a 
node and provides information on the other impacted regions in the network 
(e.g., power outage areas). It helps analysts answer questions such as, “When 
a main network node is compromised, how do the effects propagate through 
the network? What other nodes connected to the affected node are impacted, 
and thus, which critical areas are vulnerable to threats?” The VASA frame-
work provides analysts with the ability to input different models and can 
be used to study the effects of different cyber threat vectors on critical mari-
time infrastructures to detect vulnerabilities. Further, the incorporation of 
multiple displays in the visual analytics environment enhances monitoring 
capabilities. For instance, cyberattacks combined and cascaded with other nat-
ural events (e.g., severe weather) and cyber threats (e.g., attacking systems 
to disable ports) could drastically exacerbate damages, and multiple displays 
help users integrate the information from different simulations.

For example, let us examine a scenario where a cyberterrorist has disabled a 
power generation plant. This scenario is shown in Figure 7.2 (leftmost), where 
the analyst first disables the plant by selecting a power plant shown as a red 
rectangle. The model instantly estimates the affected operational facilities in 
the network (second left, Figure 7.2). The simulation results are rendered by 
a polygon that represents the area where all facilities are shut down (second 
right, Figure 7.2). The right-most image provides magnification of the result.

We have obtained initial feedback about the system from various groups. 
For instance, food chain experts stated that the VASA system helped them 
identify alternative routes in extreme weather through simulations of hurri-
canes and the resulting impact on societal infrastructure, as well as the impact 
on local stores. The regional Federal Emergency Management Agency per-
sonnel appreciated the simulation pipeline provided by VASA, which enables 
proactive planning for severe weather conditions (Ko et al., 2014).

cgSARVA (Malik, Maciejewski, Maule, & Ebert, 2011) is another exemplar 
visual analytics system that helps users use customized simulation results in a 
decision-making software environment (seen in Figure  7.3). The system, 
which was developed for the U.S. Coast Guard Ninth District and Atlantic 
Area Commands, gives expert analysts a method of interactively analyzing 

the historical performance of their search and rescue (SAR) operations and 
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FIGURE 7.2.  An Example of a Cyberattack Simulation Using the VASA System

The analyst selects the option to disable a power plant to simulate a cyberattack on that plant and selects a region shown using the red rectangle to indicate the area of 
interest (left). One main plant (purple dot) falls within this rectangle (second left). The integrated models estimate the affected subsidiary plants and workstations (red dots, 
second right). Finally, network-disabled regions are represented by a polygon and along with updated routes (right). This image was generated in a system that uses color, 
though it is printed in black and white here. For a color image with more information, see http://pubs.apa.org/books/supp/woo
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(a)

Station B

Station B

FIGURE 7.3.  cgSARVA User Interface

The calendar view at the top left counts incidents in the day-of-week layout to assist temporal analysis of incidents, the time slider at the bottom left allows 
users to interactively filter data in a variety of temporal granularities, the time series view at the top center counts incidents by the user-specified granularity (e.g., by 
year, month, or week), the clock view at the bottom right visualizes incident counts per hour. The view at the top right shows the keywords of incident reports. The 
view in the middle right allows users to filter data by multiple attributes (e.g., incident types or rescue stations). The map view at the bottom center shows the spatial 
analysis of incidents and rescue resources. Here, the map view visualizes the water area safety by the number of available boats. The subfigure (a) visualizes the water 
area safety with the assumption that Station B is closed and its boats are out of operation. The colors show boat coverage level, with green showing low and red 
showing higher boat coverage levels. This image was generated in a system that uses color, though it is printed in black and white here. For a color image with more 
information, see http://pubs.apa.org/books/supp/woo
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assessing potential risks in the maritime environment (e.g., the spatiotemporal 
trends of cases or water area safety coverage of stations). For instance, the 
system provides risk assessment functions such as station closure analysis to 
identify the potential risks if one or multiple auxiliary stations are closed due 
to budgetary shortages or natural disasters that render a station dysfunctional. 
The goal of this analysis is to optimize resource allocation, whose cost depends 
significantly on where stations are located.

cgSARVA provides several types of risk assessments. Here, we describe two 
for station closure analysis, namely the distance for rescue teams to arrive at 
incident scenes and boat coverage in the water area. The distance between 
the geographical location of a case and its closest station (which provides the 
rescue assets) contributes to the “level of risk” for a case (because it deter-
mines the time and distance required to attend to that case). On the basis of 
their domain knowledge and potential policies and commands (e.g., to pre-
pare for natural hazards or maintenance or budgetary shutdowns), the ana-
lyst interactively selects a target station for a specific temporal range in the 
visual interface to indicate a hypothetical closure for that station. The system 
automatically determines the nearest station for each case that would have 
been handled by the hypothetically closed station and the shortest distance 
between a case and the newly assigned station. After that, cgSARVA visualizes 
the distance assessment results in three aspects, including the distance distri-
bution, the number of cases each station would take over, and intuitive rep-
resentation of cases and related stations on the map (see Figure 7.4). The map 
view at the bottom center of Figure 7.3 shows the safe areas through the boat 
coverage in the water. The visualization shows the longest distance that boats 
can reach with their fuel limits from base stations. Figure 7.3 (a) shows the 
updated view if Station B is closed and its boats are not operational. The inter-
active analysis process enables an analyst to assess effectively and efficiently 
the potential risks caused by a particular station closure.

cgSARVA was accredited for use by the United States Coast Guard (USCG). 
Vice Admiral Robert C. Parker (Ret.), Commander, U.S. Coast Guard in Atlantic  
Area, described the system as “especially helpful in guiding operations and 
resource decisions by carefully analyzing data in a way that ensures the best 
return on investment” (Venere, 2013, para. 6). According to the Government 
Accountability Office, the permanent closure of stations that duplicate the 
services of nearby stations (without tangibly improving SAR efficiency) could 
result in up to $290 million in cost savings over 20 years. cgSARVA was suc-
cessfully used by the USCG to right size the USCG SAR resources in the Great 
Lakes region, and it was used to avoid resource relocation costs following 
Super Storm Sandy along the eastern seaboard. The output from cgSARVA 
demonstrated that the number of anticipated SAR missions would be low 
because of colder fall and winter temperatures and the number of private 
boats damaged during the storm. Although the USCG’s ability to respond was 
diminished due to the storm damage, the requirement for SAR response was 

also lower. cgSARVA demonstrated that a lower cost solution than shifting 
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USCG assets from other regions was possible. cgSARVA was also used to 

analyze swimmer deaths and provided information for the USCG swimmer 

and boating safety public information campaign in 2011. Also, the cgSARVA 

analysis provided input to determine the number of patrols used in 2011, 

leading to a significant decrease in deaths in 2011.

cgSARVA was used to determine the allocation of resources during Hurricane 

Irene, which occurred along the east coast in the summer of 2011. The USCG 

initially discussed diverting resources from the Great Lakes area to the east 

coast, but the data from cgSARVA indicated that there was a demonstrable 

need to keep the Great Lakes region fully resourced at that time and to draw 

the resources from another region. Similarly, cgSARVA was used to analyze the 

effects of closing Port Arthur, Texas, in 2011, including the economic impact 

and the effectiveness of alternative mitigation strategies.

Unit(s) closed - Counts vs. Distance
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In this case, a simulation is run assuming that Station B is shut down. As a result, all cases in 
Station B between 2006–2013 would be handled by the other nearest stations: 87 cases 
in Station A and 80 in Station C (shown in Unit Shutdown List). In the map view, blue 
dots are Station B’s cases. The histogram shows the frequency of case distances for the 
Coast Guard to have rescue resources on the scene for response from the newly assigned 
stations. This image was generated in a system that uses color, though it is printed in 
black and white here. For a color image with more information, see http://pubs.apa.org/
books/supp/woo

FIGURE 7.4.  Distance Risk Assessment in cgSARVA When a Station Is 
Hypothetically Closed (Malik et al., 2011)
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HUMAN–COMPUTER COLLABORATIVE DECISION-MAKING 
ENVIRONMENTS FOR BIG DATA

HCCDs are interactive and integrated discovery environments that balance 

human cognition with automated data analytics methods. Computerized 

analysis is designed and integrated within HCCDs to amplify human cogni-

tion (e.g., helping human users identify patterns and relationships among 

salient data items). The ultimate goal of HCCDs is to enable discovery or facil-

itate informed decision making by providing transparent, reliable, and repro-

ducible evidence. In an HCCD, the different data flows and parameters for 

the simulation modules and analytical methods are configurable through the 

visual interface. A real-time calculation or approximation of each simulation 

module enables an interactive visual discourse, which allows users to use 

the HCCD tool even while simulations are computing. In what follows, we 

expound on the most important characteristics of HCCDs, namely, interactivity 

and integrated models.

VISUALIZATION TECHNIQUES AND INTERACTIVITY FOR BIG DATA

The analysis of big data poses unique challenges in volume, variety, and velocity 

that must be accommodated and considered for data and visual analytics. 

Here, we briefly review how the interactivity of visual analytics interfaces 

helps address the unique characteristics of big data.

Most notably, big data includes large volumes of data, making identifica-

tion of particular data points, groups of data points, or patterns difficult. Iden-

tification involves isolating or highlighting data that is relevant to the analysis 

question or phenomena of interest. Visual analytics systems use interactive 

dynamics such as selection, view coordination, sorting, or real-time querying 

for identification while enabling the users to correct the system-generated 

identified data items (unlike traditional sampling). Identification has another 

purpose too—determining the appropriate scale of analysis for any phenom-

ena. Usually, data is aggregated in various units (spatial units, such as census 

tracts, counties, or states, or temporal units, such as days, weeks, or months). 

Using interactive dynamics, automated aggregating mechanisms, and iterative 

refinement of views, users can identify the relevant scale of analysis according 

to the data and context at hand (Klein & Kozlowski, 2000).

Interactivity helps with addressing the integration of various types of data 

(which is another characteristic of big data) though giving the users the ability 

to select, switch, swap, and combine different data types on visual interfaces 

for gaining insight into a complex phenomenon of interest. Furthermore, inter

activity helps with the analysis of data that have high velocity (e.g., streaming 

data), by giving the users the ability to view and sort through the incoming data 

(which is added incrementally to the interactive and dynamic interface) for 

identifying key insights. Real-time visual analytics enables users to identify 

important dynamic changes over time using both incoming and historical data.

Co
py

ri
gh

t 
Am

er
ic

an
 P
sy

ch
ol
og
ic
al
 A
ss
oc
ia
ti
on
. 
No
t 
fo
r 
fu

rt
he

r 
di

st
ri

bu
ti

on
.



164  Karimzadeh et al.

These interactive dynamics are especially important for big data analytics 
because the goal of big data analytics is usually not to just validate known 
hypotheses but to unveil new patterns. In traditional data analysis (e.g., sta-
tistics), hypotheses are formed beforehand and tested for validity during 
analysis, and visualization is used for communicating the analysis results. In 
big data visual analytics, however, data visualization is used as a means of 
exploration and pattern identification (Kirk, 2012).

As far as visualization techniques are concerned, individual big data ana-
lytics techniques are not inherently different from small data visualization 
techniques. Given that familiarity and memorability are key to successful 
visualizations, it is common to renovate and reenvision familiar visualizations 
and integrate them within complex visual analytics systems with added inter-
activity, linked views, and bushing techniques (Robinson, 2011). For instance, 
the same visualizations for summarization (e.g., bar graphs, pie charts, line 
graphs) are used for big data but with more interactive features that can 
render additional elements and details on demand. Innovative data visualiza-
tions are more common with unstructured novel data sources such as text. 
Even though the majority of all data in digital form is in unstructured, free-
form text, leveraging text in research and analysis has become common 
only in the social media age (Karimzadeh et al., 2013; Savelyev et al., 2014; 
Wallgrün et al., 2018). Various novel techniques such as Themerivers (Havre, 
Hetzler, Whitney, & Nowell, 2002) or overlaid tag-clouds (Bateman, Gutwin, 
& Nacenta, 2008; Zhang et al., 2018) are used in interactive settings to visu-
alize textual content in time or space, respectively.

Last, interactivity is essential in incorporating user input in what-if scenar-
ios, such as the discussed examples of cgSARVA and VASA. The interactivity 
of HCCD and visual analytics systems also allows stakeholder feedback for the 
coupled, data-driven methods for correction or adjustment. In other words, 
interactive visualizations are not used just for adjusting parameters and intro-
ducing what-if scenarios but also to correct the integrated (machine learning 
or biophysical) models.

OPPORTUNITIES AND EXAMPLES

In this section, we review the visual design, features, and application of two 

proven visual analytics systems for big and high-dimensional data, leveraging 

computational algorithms and user input for two different domains: social 

media analysis for situational awareness and organizational performance 

evaluation. These systems highlight the capabilities of visual analytics and 

integrated HCCD environments described throughout this chapter.

Social Media Analytics

Social media data have become increasingly popular due to the ability to pro-

vide useful information on people’s attitudes, opinions, and behavior. Social 
media has enabled researchers and practitioners to have access to real-time 
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data at unprecedented rates and resolutions, essentially using humans as sen-
sors on the ground, enhancing “situational awareness.” Of specific relevance 
to our discussions on visual analytics of big data is the widely used platform, 
SMART (Social Media Analytics and Reporting Toolkit—Figure 7.5), which 
exemplifies our efforts in machine learning-based visual analytics to support 
humanitarian assistance and disaster response (Zhang, Chae, Surakitbanharn,  
& Ebert, 2017; Snyder, Karimzadeh, Stober, & Ebert, 2019). SMART provides 
users with scalable, real-time, and interactive social media data (e.g., Twitter 
and Instagram) visual analytics. SMART allows analysts to customize classifiers 
to monitor trending topics as well as unusual anomalies in the online dis-
course. SMART combines advanced statistical modeling, text analytics, and 
novel anomaly detection techniques augmented by human expertise. It pro-
vides users with the ability to search, examine, and further investigate rele-
vant social media messages from the streaming big social media data by using 
natural language processing, topic modeling, advanced filtering techniques, 
and visual summarization techniques. The system uses several semiautomated 
text analysis and probabilistic event detection tools together with traditional 
zooming, interaction, and exploration to enable the detection and explora-
tion of tending and abnormal topics. Web and news media sources are also 
incorporated into the system so that users can search for relevant news articles 
of interest to further corroborate intelligence acquired from social media data.

SMART leverages text classifiers to sift through large amounts of social 
media posts (with a low signal-to-noise ratio) for advanced yet intuitive visu-
alizations to present users with the most relevant information on the disaster 
or event in question. To ensure that these classifiers do not generate false 
positives (posts that are not relevant to the analyst’s interests) due to content 
that includes various meanings of certain keywords (e.g., “I feel on fire tonight; 
everything is going great”), we have supplemented the system with human-
in-the-loop deep learning classifiers that leverage context to identify relevant 
(or irrelevant) content (Snyder, Lin, et al., 2019).

One of SMART’s visualizations is the topic model view (see Figure 7.6). 
The topic model view uses latent Dirichlet allocation (Blei, Ng, & Jordan, 
2003) to discover, define, and prioritize the primary topics in the social media 
data. Within each topic, associated keywords are displayed in a word cloud 
visualization, where each word’s size and color jointly encode its usage fre-
quency. By clicking on any of the words, the user can immediately view the 
tweets containing them on the map and in the geo-message table, allowing 
for the rapid discovery of social media posts on particular trending topics.

In addition, the content lens feature (see Figure  7.7) complements the 
topic model view by allowing the user to hover over an area on the map and 
view the most frequently used words among the tweets within that area. The 
topic model view and content lens together enable users to quickly detect and 
learn important content information about specific areas and topics. This 
shows the strong potential of coupled computational models such as latent 

Dirichlet allocation, natural language processing, and text and spatial data 

visualization for sifting through massive amounts of social media to identify 

important insights during various events of interest.
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FIGURE 7.5.  SMART’s Main User Interface Summarizing Hurricane-Related Twitter and Instagram Posts for Hurricane Florence

The topic lens (center) helps analysts identify different categories of posts (e.g., weather, Hurricane Florence, safety) according to user-defined classifiers and 
machine learning models, content lenses (three lenses placed on the map) showing different human-generated first-hand reports in the north (e.g., “WHAT 
Hurricane?!!?!”) and the south (e.g., “It’s getting windy out here!”), and relevant information extracted through Instagram posts such as real-time videos and  
reports on the weather. This image was generated in a system that uses color, though it is printed in black and white here. For a color image with more information, 
see http://pubs.apa.org/books/supp/woo
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To narrow down the sea of incoming text data from social media, SMART 

also allows users to interactively define and apply semantic text classification 

filters, such as ones for “Safety,” “Security,” and “Weather” (see Figure 7.8), 

which can provide increased detection of contextually relevant data on the fly. 

Moreover, the cluster lens visualization (see Figure 7.9) aggregates a specific 

geographic area and populates the topical keywords that the social media posts 

used for each classifier.

Together, SMART’s classification and cluster lens are incredibly powerful 

tools that provide users with situational awareness for effective decision making 

based on the situation on the ground, as sensed by human users. Particularly, 

emergency responders can rapidly identify user posts pertaining to disaster- 

related, life-threatening, or hazardous events for further investigation or 

resource deployment. When combined with geographic coordinates and sup-

plementary human knowledge, responders can use information from SMART 

to efficiently determine the best course of action and act appropriately.

FIGURE 7.6.  Topic View, Showing Words in Each Detected Topic Using Latent 
Dirichlet Allocation

The size and color of words show their frequency in each topic. Users can click on any 
word to narrow down the visualization in other views to topical contents represented by 
those words. This image was generated in a system that uses color, though it is printed in 
black and white here. For a color image with more information, see http://pubs.apa.org/
books/supp/woo
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SMART has been used successfully by over 50 agencies across the country, 

including first responders, nongovernmental organizations, and government 

agencies for situational awareness and hurricane response and recovery 

(Snyder, Karimzadeh, et al., 2019). The USCG has used SMART to maintain 

situational awareness for safety during several significant events (e.g., San 

Francisco Fleet Week, Cincinnati Riverfest 2017 and 2018, Thunder-Over- 

Louisville, multiple hurricanes during the 2017 and 2018 hurricane seasons, 

and the Republican National Convention held in Cleveland in July 2016). Over-

all, SMART provides a wide range of use cases, such as monitoring planned 

events or detecting unexpected issues, that might otherwise be difficult due to 

the vast amount of social media data.

Performance Evaluation for Law Enforcement Agencies

The performance evaluation of individuals, teams, and organizations requires 

the combination of multidimensional performance metrics that are objectively 

FIGURE 7.7.  Content Lens of SMART, Combining Spatial Aggregation With Latent 
Dirichlet Allocation for Topic Modeling, Showing the Top Topics and Keywords 
for Any Area of Interest Represented by User-Placed Circles on the Map View

This image was generated in a system that uses color, though it is printed in black and white 
here. For a color image with more information, see http://pubs.apa.org/books/supp/woo
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measured, flexible structure for incorporating various kinds of tasks and orga-

nizational dynamics, and supervisors’ domain knowledge of the importance 

of various metrics. The visual analytics approach has been applied in the field 

of organizational performance evaluation, which is a fundamental topic in orga-

nizational psychology (Cleveland, Murphy, & Williams, 1989). In this section, we 

provide an example of such an approach from our previous work on a perfor-

mance evaluation tool kit designed for medium to large-sized law enforce-

ment agencies. The approach and the visualization techniques presented, 

however, are generalizable to other kinds of organizations.

With the assistance of computer-aided dispatch systems, law enforce-

ment agencies can take advantage of digitized incident logs to analyze officer 

response. Importantly, digitized records can allow police department chiefs and 

supervisors to examine more effectively officer productivity for performance 

TwitterStream

Create a new node

Remove a node

Reset

Safety

wildfire H_Florence

IVerbIVerb

IVerb IVerb

IVerb IVerb

Security Not-Job Weather

2520

38

129116

4

Union two nodes

Intersect two nodes

Edit an existing node

1426

FIGURE 7.8.  Creating New Classifiers in SMART

Users can associate certain keywords with different categories for further filtering down 
of posts related to those classifiers, creating a union or intersection of different classifiers. 
This image was generated in a system that uses color, though it is printed in black and 
white here. For a color image with more information, see http://pubs.apa.org/books/
supp/woo
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improvement across departments. To facilitate this process, we designed a 

visual analytics application called MetricsVis that supports data-driven, multi

criteria performance evaluation of employees (Zhao et al., 2017). Specifically, 

the system allows supervisors to both interactively customize evaluation metrics 

by defining what data characteristics constitute exemplar performance and dis-

cover influential factors that can improve resource allocation, strategic plan-

ning, and operational decision making.

MetricsVis uses multi-attribute vectors, which are obtained from stored 

relational database records to represent employee performance. Within the 

context of law enforcement, different types of incidents (e.g., theft, murder, 

arson) each represent an attribute, and an officer’s number of responses to 

a given incident represents the numeric value for that attribute. Overall 

FIGURE 7.9.  Cluster Lens in SMART, Using Spatial Aggregation and Topic 
Modeling to Show Important Keywords for Each Category (Resulting From  
a User-Defined Text Classifier) on Any Area of Interest

The cluster lens in this example signifies the presence of important social media content 
for the Security, Weather, and Safety classifiers. This image was generated in a system 
that uses color, though it is printed in black and white here. For a color image with more 
information, see http://pubs.apa.org/books/supp/woo
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performance can then be computed as the sum of an officer’s attributes, with 
each attribute weighted by the user according to its importance. However, the 
large number of dimensions and extensive data can cause difficulty in com-
paring performance between employees or for specific tasks. Thus, MetricsVis 
adopts an interactive reorderable matrix (see Figure 7.10b) that effectively 
demonstrates the details of each data item in one view. Users can dynamically 
adjust weights and filter attributes to understand performance from different 
perspectives and gain insight into improving and maintaining organizational 
achievements. As a result, supervisors can better understand employee per-
formance on an individual, team, and organizational level. The police chief 
and commanders at the Lafayette police department have confirmed the use-
fulness of the matrix visualization for obtaining a holistic view of all officers’ 
effectiveness for each incident category, as well as the overall performance of 
the entire department.

CONCLUSION

Advanced automated methods, such as deep learning models, provide great 
promise in gleaning insight from big data. Dynamic, changing, and context- 
dependent phenomena, however, require human knowledge, expertise, and 
reasoning for decision making. Humans’ natural ability to identify patterns 
in disparate sources of data and to contextualize analytical results in a broader 
social context complement automated methods in generating useful, action-
able information for real-world problems. Extending the traditional visualiza-
tion paradigm that communicates the analysis results through storytelling, 
visual analytics enables further exploration and analysis of data and discover-
ing unknown stories and patterns in data. For these systems to be successful, 
though, they have to ensure that they amplify the cognitive and analytical 
processes of the human while not increasing the user’s cognitive load or reduc-
ing their effectiveness.

Machine learning models generate results that depend heavily on the train-
ing data or configuration parameters, potentially leading to biased results that 
reflect the choices made in the sampling of training data (or the real-world 
conditions captured in the training data as a snapshot) or the choice of con-
figuration parameters. Integrating machine learning models within inter
active systems allows researchers to elicit feedback from human users to correct 
erroneously generated results and provide additional training data, resulting 
in models that reflect real-world conditions. This interactive, visual, and explain-
able machine learning offers the greatest promise for the successful adoption 
and use of machine learning.

In addition, HCCD environments enable the integration of various compu-
tational models with interactive user interfaces for generating simulation 
results that facilitate testing various what-if scenarios for optimal decision 
making. HCCDs integrate sensed data, models (e.g., environmental, energy, 
or decision models), and interactive analysis, exploration, and prediction 
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(a) Control Panel (b) Matrix View (c) Weight Table

Officer
IDs

Crime
Offenses

(a) A control panel includes options for selecting a temporal range and filtering by incident types (e.g., dispatched vs. self-initiated). (b) A matrix visual representation 
shows the crime offense categories in rows and individual officers in columns. The colored blue cells demonstrate the product of [number of incidents that were 
responded to by an officer in one crime offense category] and the [weight assigned to the particular crime offense category by the system user]. Users can change 
the weight for each category interactively according to the perceived importance and policies for each organization. The red cells in the top headings show the total 
score of an officer, and the red cells on the left show the total score of a crime offense category. Darker colors mean higher values. (c) A weight table lists the crime 
offense categories and the corresponding manually assigned weights. The weights usually reflect the priorities of an organization. This image was generated in a 
system that uses color, though it is printed in black and white here. For a color image with more information, see http://pubs.apa.org/books/supp/woo

FIGURE 7.10.  The Overview of the Organizational Performance Evaluation Visual Analytics Application
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capabilities. Users can visualize and manipulate intermediate and final results 

of the different data-driven and theoretical models for key decision points 

(within what-if scenarios) to identify optimal solutions, such as balancing 

resource allocation and response time in disaster management.

As demonstrated in this chapter, visual analytics systems have been in 

active use and have great potential for problem solving in various domains 

such as social media analytics, humanitarian relief, disaster preparedness 

response and mitigation, and resource allocation. Furthermore, visual analyt-

ics provides pathways for researchers in various fields, including psychology, 

to engage in inductive or abductive approaches using the wealth of available 

data to generate new hypotheses (see Chapters 1 and 12).

Research in computational methods, visualization, and cognitive science 

can help advance visual analytics by finding solutions that leverage both 

machines’ computational power and humans’ cognitive abilities. Specifically, 

behavioral and cognitive studies can identify the tendencies and biases in 

ways humans view and use information, approach analysis, and make deci-

sions. This line of research is essential not only to visual analytics but also to 

computational methods because automated methods are also marked by the 

choices (and potentially biases) humans introduce when designing algo-

rithms, sampling data, and interpreting the results.
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