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Abstract

The Multisource AI Scorecard Table (MAST) is a checklist tool based on the U.S.
Intelligence Community’s analytic tradecraft standards to inform the design and evaluation
of trustworthy AI systems. In this study, we investigate whether MAST can be used
to differentiate between high and low trustworthy AI-enabled decision support systems
(AI-DSSs). Evaluating trust in AI-DSSs poses challenges to researchers and practitioners.
These challenges include identifying the components, capabilities, and potential of these
systems, many of which are based on the complex deep learning algorithms that drive
DSS performance and preclude complete manual inspection. Using MAST, we developed
two interactive AI-DSS testbeds. One emulated an identity verification task in security
screening, and another emulated a text summarization system to aid in an investigative task.
Each testbed had one version designed to reach low MAST ratings, and another designed to
reach high MAST ratings. We hypothesized that MAST ratings would be positively related
to the trust ratings of these systems. A total of 177 subject matter experts were recruited
to interact with and evaluate these systems. Results generally show higher MAST ratings
for the high-MAST conditions compared to the low-MAST groups, and that measures of
trust perception are highly correlated with the MAST ratings. We conclude that MAST can
be a useful tool for designing and evaluating systems that will engender trust perceptions,
including for AI-DSS that may be used to support visual screening or text summarization
tasks. However, higher MAST ratings may not translate to higher joint performance, and
the connection between MAST and appropriate trust or trustworthiness remains an open
question.

©XXXX The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.
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1. Introduction

Decision-making is increasingly dependent on artificial intelligence (AI) in many high-stakes
domains, such as healthcare, where AI systems are used for tasks like assessing breast lesions
or diagnosing arrhythmia (Phillips-Wren, 2012; Zhu, Gilbert, Chetty, & Siddiqui, 2022).
These AI-enabled decision support systems (AI-DSSs) help institutions meet high service
demands with limited human resources (Knop, Weber, Mueller, & Niehaves, 2022). However,
alongside these advancements, there is a growing concern about the trustworthiness of AI-
DSSs, particularly in safety-critical areas such as national security and medical diagnostics
wherein AI errors could result in catastrophic consequences (Cooke & Durso, 2007). In these
contexts, sensitive applications of AI technologies are typically designed with humans-in-the-
loop.

Human-in-the-loop systems often integrate human supervision with AI decision-making
processes to ensure that decisions are not only data-driven but also contextually informed
and ethically sound (Parasuraman & Wickens, 2008). Trust plays a pivotal role in these
systems, because trust influences the willingness of individuals to engage with and rely on
the AI. People’s trust in automation has been found to be closely linked to their confidence
in the system’s performance and its consistency with human values (Lee & See, 2004). In
safety-critical and time-constrained task environments, trust in AI becomes crucial when
individuals must rely on AI recommendations or actions without consistent monitoring or
the ability to intervene. Consequently, trustworthy AI-DSSs with humans-in-the-loop need
to maintain a delicate balance. These systems should enable human supervisors to effectively
intervene in situations where the AI may underperform or commit errors, particularly in
edge cases, while allowing for the AI’s reliable application in routine tasks. Achieving this
balance is critical in scenarios where both safety and rapid decision-making are paramount.

Existing design frameworks and best practice guidelines for human-in-the-loop systems
often offer broad recommendations (e.g., de Visser, Peeters, Jung, Kohn, Shaw, Pak, &
Neerincx, 2020; Schaefer, Chen, Szalma, & Hancock, 2016), presenting a challenge in
translating these recommendations into specific, implementable features in AI technologies.
This has raised concerns about the practicality and impact of these frameworks in the
development, testing, and evaluation processes of AI systems. There is a continuous need
for more precise guidance that can be quickly and effectively operationalized to optimize the
design-test-evaluation cycles, an ongoing pursuit for both researchers and practitioners.

To bridge some of these existing gaps in the design cycle, the Multisource AI Scorecard
Table (MAST) was developed as a structured checklist to aid in designing and evaluating
AI systems for trustworthiness (Sung, Nguyen, Blasch, Daniel, G, & Mason, 2019; Blasch,
Sung, & Nguyen, 2021). MAST is grounded in the principles of the Intelligence Community
Directive (ICD) 203, which sets forth nine tradecraft standards for evaluating the quality of
human intelligence reporting in the Intelligence Community (ODNI, 2015). These standards
include sourcing, uncertainty, distinguishing, analysis of alternatives, customer relevance,
logical argumentation, consistency, accuracy, and visualization. MAST extends these criteria
to include aspects of data transformation, aggregation, labeling, data display, and contextual
relevance that cover various phases of the AI system’s life cycle from data collection to
continuous monitoring (Blasch, Sung, Nguyen, Daniel, & Mason, 2019). The underlying
premise of MAST is that by integrating these nine criteria into AI system design, the
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outputs become more transparent and trustworthy, thereby improving the AI’s utility and
effectiveness in human-in-the-loop systems. While MAST’s usefulness has been demonstrated
through several case studies in intelligence and reconnaissance tasks (Sung et al., 2019;
Blasch et al., 2021), empirical studies dedicated to validating this tool are yet to be published
as of this writing.

This paper pursues this objective by applying the MAST framework to the design and
subsequent evaluation of two AI-DSSs. Facewise is an identity verification system and
READIT (REporting Assistant for Defense and Intelligence Tasks) is a system for text
summarization and data visualization. The primary goal of this study is to investigate
two key aspects of MAST framework, namely, (1) the potential of the MAST to aid in the
design and evaluation of human-AI systems that reflect human trust perceptions, and (2)
the broader applicability of MAST in assessing the trustworthiness of AI-DSSs for other
safety-critical task environments, extending beyond its use in intelligence or reconnaissance
tasks.

Our research offers valuable insights into the utility of MAST as a tool for the design
and evaluation of AI systems, while also contributing to the existing body of knowledge on
trust in technology. Our findings suggest that integrating the nine MAST criteria into AI
system design positively influences users’ trust perceptions. Moreover, we find that MAST
is effective in improving trust perceptions not only in systems designed for intelligence tasks
but also in a broader range of AI-enabled applications. However, the study also uncovers
potential limitations of MAST, suggesting areas for future research. An important finding,
echoing similar findings in other research, shows that high trust perceptions and in this case
high MAST scores also do not necessarily translate to higher human-AI system performance.

This study underscores the challenge of operationalizing universal criteria that can
improve human-AI system performance and that can effectively incorporate trust concepts
into human-AI system design. Despite these challenges, our findings support the potential of
MAST as a viable tool in system design. It contributes to aligning design with practitioner
norms, facilitates the documentation of essential transparency information, and can engender
high trust perceptions in systems intended for safety-critical tasks.

2. Background

The role of people as the final arbiters over imperfect automation has a long history (Sheridan,
1975; Bainbridge, 1983). In the supervisory control structures that govern most human-AI
systems, people are tasked with assessing and, if necessary, intervening in AI outputs.
However, many DSSs are designed for task environments in which people rarely have the
cognitive and physical resources to sufficiently understand, assess, and intervene with every
recommendation (McGuirl & Sarter, 2006). This is especially true in safety-critical systems,
in which people may be expected to attend to every outcome produced by imperfect AI-DSSs.

Limitations in human decision-making amid imperfect AI-DSSs have resulted in novel
types of problematic outcomes, some of which have been catastrophic. For example, people
tend to overly rely on decisions recommended by automation or AI, even when there are
clear indications that the recommendation may be wrong (e.g., automation bias; Skitka,
Mosier, & Burdick, 1999). An infamous case is from the Iraq war, in which the Patriot
missile system’s DSS erroneously identified allied fighter jets as enemy aircraft. Operators of
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the missile system approved the DSS-recommended decision to attack the aircraft, causing
the fratricide of American and British pilots (Cummings, 2006). More recently, a series
of wrongful arrests in the United States has been traced to law enforcement reliance on
facial recognition technologies that have considerable racial and gender biases (e.g., Hill,
2020; Hill & Mac, 2023). However, upon recognizing errors in AI recommendations, there is
also a tendency for people to reject future AI recommendations (e.g., automation aversion;
Dietvorst, Simmons, & Massey, 2015), especially by experts in the decision-making domain
(Snow, 2021).

People’s tendency to overuse, misuse, or disuse DSS has long been linked to poorly
calibrated perceptions of the DSS’s trustworthiness with respect to its actual reliability
(Parasuraman & Riley, 1997). As such, methodological frameworks, policy guidelines, and
other tools for designing and evaluating DSS trustworthiness have proliferated alongside
advancements in AI-DSS capabilities. These include but are not limited to, the Microsoft
UX Design Principle (Microsoft, 1995), NISTIR 8330 by National Institute of Standards and
Technology (Stanton & Jensen, 2021), AI Fairness 360 Toolkit by IBM (Bellamy, Dey, Hind,
Hoffman, Houde, Kannan, Lohia, Martino, Mehta, Mojsilovic, Nagar, Ramamurthy, Richards,
Saha, Sattigeri, Singh, Varshney, & Zhang, 2019, and others), IEEE Global Initiative on
Ethics of Autonomous and Intelligent Systems (Chatila & Havens, 2019), UXPA Guidelines
for Trustworthy User Experiences (Kriskovic, Dutta, & Brewer, 2017), or Ethical OS Toolkit
(Lilley, Currie, Pyper, & Attwood, 2020). Although these tools do not all explicitly focus
on the concept of trust and trustworthiness, they share an underlying motivation that the
design, development, and evaluation of AI systems that impact people and organizations
require attention to human factors.

Despite the existence of many frameworks and tools to guide the design of trustworthy
AI and other software systems, designing for trust and evaluating trustworthiness in practice
remains a challenge. There is a wide translation gap between theory and practice, partly
because trust is an abstract construct with myriad closely related concepts. For example,
designing trustworthy systems also often involves designing for transparency, individual
differences, workload, situation awareness, and attending to other possible factors like eti-
quette and anthropomorphism (Hoff & Bashir, 2015; Parasuraman & Miller, 2004). Another
challenge to effectively designing trustworthy AI is that the various expert communities
in different domains may define trust differently. These differences in definitions can be
attributed to what each community values most and therefore, designing for trustworthy AI
means something different for every community. For example, the intelligence community
might value high-quality data as a foundation for high-quality analysis. For the transporta-
tion security community, it might value high-quality decisions made at the front lines that
could affect traveler safety, more so than data integrity.

To address this gap between concept and practice of designing and evaluating the
trustworthiness of AI systems, the Multisource AI Scorecard Table (MAST; Sung et al.,
2019; Blasch et al., 2021) was developed by the AI Team of the 2019 Public-Private Analytic
Exchange Program, supported by the Office of the Director of National Intelligence and
Department of Homeland Security. MAST describes nine criteria derived from analytic
tradecraft standards ICD 203 to assess the trustworthiness of intelligence reporting, and
additionally includes a four-level quantitative breakdown for each criterion. The idea is that
MAST could serve as an easy-to-use checklist for designing trustworthy AI-enabled systems,
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and for evaluating trustworthiness after system development. Although the principles
behind MAST would seem more suitable for intelligence tasks given its focus on information
quality and integrity, it is possible that these criteria may be applied to other human-in-the-
loop systems used for information-processing and other human decision-making tasks. For
example, AI-enabled systems in computer vision, natural language processing, and medical
diagnostic tasks may all be rated according to the MAST criteria, including rating the
system’s sourcing (e.g., credibility of training data), or its ability to describe and propose
alternative recommendations. Medical professionals and their patients may be more willing
to trust an AI-derived diagnosis and treatment plan if the system was developed to include
the MAST criteria of uncertainty, analysis of alternatives, and customer relevance.

It should be noted that several instruments have been developed to measure trust
in automation, including instances of AI-enabled automation (Alsaid, Li, Chiou, & Lee,
2023; Kohn, de Visser, Wiese, Lee, & Shaw, 2021). Many of these instruments have been
widely adopted, others have been independently validated. However, these instruments were
mainly designed for research or technology evaluation purposes, rather than for technology
development or operational settings. Therefore, although these instruments could be
considered relatively robust when used appropriately, they suffer from similar limitations
as the design frameworks and tools described previously. There remain wide translation
gaps, and highly variable interpretation from principles to practice, given the hundreds
of under-specified conditions and decisions that system designers and other practitioners
face. For example, underlying many of these instruments is a nuanced presumption that
assessing domain experts’ trust in a particular technology, after they have experienced using
the technology, could be some indication of the technology’s trustworthiness. This presumed
connection between trust and trustworthiness is then flattened in some practitioner circles,
where high trust perceptions are equated with high technology trustworthiness, despite most
trust experts being careful not to conflate the two.

To situate the MAST tool in the context of current trust scholarship, our primary objective
is to assess the construct validity of MAST relative to human trust. Construct validity
is the degree to which an instrument measures the construct it was designed to measure
(Cronbach & Meehl, 1955). Approaches for evaluating construct validity include multivariate
analytical tools, such as factor analysis (Raykov & Marcoulides, 2008; Tabachnick, Fidell,
& Ullman, 2013), principal components analysis (PCA; Bandalos, 2018), and structural
equation modeling (Kline, 2015). The goal of using multivariate analysis in construct
validation is to capture, explain, and measure the amount of variation among items for
a construct and to associate these with previously validated constructs (Chancey, Bliss,
Yamani, & Handley, 2017; Jian, Bisantz, & Drury, 2000). This study aimed to validate
MAST as an instrument for assessing trust by investigating how MAST items are associated
with validated trust questionnaires.

3. General Method

To validate MAST in different contexts, we used the MAST checklist as a framework, in
conjunction with our expertise and knowledge on state-of-the-art AI algorithms, to design
two AI-DSS testbeds, one for identity-verification in a security screening task (Facewise)
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and another for text summarization and visualization in an investigative task to support
intelligence reporting (READIT). We describe these two testbeds in more detail below.

3.1 Testbeds: Facewise and READIT

Facewise is a simulated 1-to-1 identity verification system that utilizes a pre-trained convolu-
tional neural network, further fine-tuned for face recognition tasks using Cross-entropy loss.
It compares an identification photo with a live or encounter photo and outputs a decision on
whether they represent the same identity (match) or different identities (mismatch). Such
AI-powered face-matching decision support systems are increasingly common at airport
security checkpoints, such as CAT-C or CAT2 (Lim & Cantor, 2021).

READIT, which stands for the REporting Assistant for Defense and Intelligence Tasks,
is an emulated natural language processing system that was designed to compile, summarize,
and categorize documents of limited length (news articles, reports, microblogs) to expedite
intelligence gathering and reporting. READIT first uses BERT (Devlin, Chang, Lee, &
Toutanova, 2019) to generate outputs, after which we manually improved on the model
outputs to enhance the usefulness and usability of the tool.

The case scenario for READIT was to assess MAST within the text summarization
contexts that MAST was originally designed and evaluated for (Blasch et al., 2021). The
identity verification scenario was selected to test the validity of the MAST checklist using a
different type of AI capability, in a different type of task environment, while staying within
a national security context subject to low risk tolerance. Our case scenario and AI-DSS
testbeds were designed and developed based on information gathered from field visits to
operational security screening environments, and bi-monthly consultations with operational
stakeholders (i.e., national security researchers, practitioners, and analysts).

Both Facewise and READIT were developed using cloud-based services consisting of
client-server model for user-AI interaction. In the Facewise system, we leveraged Amazon
Web Services (AWS) and Google Cloud Platform (GCP) for efficient use of storage and
resources. We built the client part of the platform with HTML5 and JavaScript. We collected
the responses from participants on the client’s side and sent them to the GCP through
Python3 and Flask library to save them in the database. Similarly, the READIT system
consisted of a JavaScript based client that enables the participant-AI interaction, and the
server was built using Python3 and Flask library, hosted on GCP. Data visualizations on
READIT were created to aid in better understanding of the dataset. The visualizations were
implemented using D3.js, which is a popular open-source JavaScript library for creating
custom interactive data visualizations. While participants were conducting the task, we
logged system activities (e.g., button clicks, and relevant changes to the system state) to
assess performance. The implementation code for READIT and Facewise is available at:
https://github.com/nayoungkim94/PADTHAI-MM.

3.2 Constructs and Measures

For both DSS platforms, system features were manipulated to comprise two versions (High-
MAST and Low-MAST) with eight outcome variables of interest: MAST criteria ratings;
perceptions of risk, benefit, trust, credibility; task performance; self-reported engagement
and usability. These constructs and measures are defined in more detail below.
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Versions of the DSS: High-MAST and Low-MAST. System features refer to the
available features that a DSS can provide its operators. Based on the MAST checklist, two
levels of features for each platform were created: High-MAST and Low-MAST. High-MAST
features were designed to score high ratings on each of the MAST criteria, resulting in a set
of rich features that was supposed to be helpful to excel in the task. On the other hand,
Low-MAST features were designed to score low ratings on each of the MAST criteria with a
minimum set of necessary features included to be able to complete a task. In summary, the
High-MAST versions could be described as providing more information about the DSS’s
performance given the task context, and the Low-MAST versions were designed to operate
more like black-box systems. However, both High- and Low-MAST versions were designed to
be as equal as possible in terms of engagement and usability. Appendices A and B delineate
the MAST criteria and detailed feature descriptions for Facewise and READIT, respectively.
More information about our development process and design decisions of our DSS testbeds
are not the focus of this paper, but will be reported in detail in a forthcoming paper.

Variables of interest: MAST criteria, risk, benefit, trust, credibility, performance,
engagement, and usability. Each DSS was evaluated based on descriptions of the MAST
checklist and using a Likert-like scale of 1 to 4, with 1 being poor and 4 being excellent.
Each MAST criterion was shown in a question format and accompanied by a corresponding
feature description of the DSS. The MAST-total score was created by adding up these 9
criteria with a range of 9 to 36. Participant perception of risk and benefit was measured
through two items derived from (Weber, Blais, & Betz, 2002). Risk was included due
to the well-known relationship between trust and risk (Lee & See, 2004) and perceived
benefit was included to check whether participants felt that using the DSS was beneficial
for the task they were asked to complete. To measure trust, we used two commonly-used
questionnaires. One is a previously validated, 12-item instrument known to measure general
trust perceptions of automation (Jian et al., 2000; Spain, Bustamante, & Bliss, 2008). The
second 15-item instrument measures trust by querying about specific types of information
known to affect trust – purpose, process, and performance (Chancey et al., 2017). Because
the MAST checklist largely focus on the presentation, availability, types, and quality of
information presented by the AI system, we also included a measurement for message
credibility (i.e., excluding source credibility), adopting a 3-item survey (Appelman & Sundar,
2016). Appendix C presents the scale, example items, number of items for each variable,
and their Cronbach’s alpha.

We measured performance through two variables, average task completion time and a
scenario-specific performance metric. For Facewise, our scenario-specific performance metric
focused on average accuracy on the identity verification task that took roughly 30 minutes
to complete. The off-the-shelf performance of the algorithm used had an accuracy rate
of 95% across test data during model training (Coşkun, Uçar, Yildirim, & Demir, 2017).
However, with the database used in this experiment, its performance was around 60% for
the difficult cases, and greater than 95% for the easy cases. Participants were not given
this information about the algorithm’s performance in advance nor were they informed
about the potential difficulty levels of the cases in advance, but they were alerted to the fact
that part of their task was to ensure that the correct decision was made with an algorithm
that was potentially fallible. More information about the algorithm’s performance could be
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accessed by participants only from the additional information option provided as part of the
High-MAST interface.

For READIT, our scenario-specific performance metric was the score of a 250-word
report completed within roughly 60 minutes. We asked participants to identify any present
terrorist threat based on past news in a fictitious city named “Vastopolis” and to write
a 250-word report detailing its aspects and reasons (e.g., type of terrorist activity, the
group behind it, etc.) The task was designed based on the 2011 IEEE Visual Analytics
Science and Technology (VAST) Challenge (IEEE SEMVAST Project, 2011). To score the
reports, we created a rubric ranging from 1 to 5 based on similarity to the ground truth of
the VAST challenge. A score of 1 indicated unsatisfactory content, which consisted solely
of red herrings or non-ground truth clusters. A score of 2 represented less satisfactory
content, mostly comprising red herrings or non-ground truth clusters. A score of 3 denoted
satisfactory content, with more ground truth clusters than red herrings or non-ground truth
clusters. A score of 4 signified mostly satisfactory content, primarily consisting of ground
truth clusters. Finally, a score of 5 marked excellent content, comprising only ground truth
clusters. The reports were color-coded for easier grading, using red for red herrings or
non-ground truth clusters and bold for ground truth clusters. Two researchers independently
rated participants’ analytical reports. The grading scores largely converged (inter-rater
reliability was 73.91%), and in case of any discrepancy among raters, the lower score was
used. Apart from task performance, the other dependent variables and covariates were
identical for Facewise and READIT.

To ensure that our implementation of different system features across the two testbeds
would not cause major differences in perceived system usability and task engagement, and
subsequently affect trust, risk, and benefit perceptions, we measured participants’ perceived
usability and engagement in the interactive task. Usability was assessed with a widely-used
10-item questionnaire known as the System Usability Scale (Brooke, 2020) and engagement
was assessed with a 17-item questionnaire (Schaufeli, Salanova, Gonzalez-Roma, & Bakker,
2002). Appendix C reports more details of these measures. In addition, because study
participants were experts (professionally trained in) face matching and intelligence analysis
task domains, we manipulated task difficulty to ensure sufficient task engagement. For
Facewise, we did this by hand-selecting 80 pairs of face images with known ground truth,
with 40 of those image pairs representing easy tasks and the remaining 40 image pairs
representing difficult tasks, presented in randomized order. Difficulty was defined from the
perspective of the human operator, with difficult image pairs largely selected from a publicly
available sibling database (Parkhi, Vedaldi, & Zisserman, 2015), and validated in a pilot
study with a general population sample that was on average more likely to get the difficult
pairs wrong. For READIT, we included “red herring” documents from the VAST Challenge
dataset (IEEE SEMVAST Project, 2011) to encourage participant engagement in the task;
several of these documents were related and collectively formed narratives that presented
several plausible causes for the terrorist threat scenario. These “red herring” documents
would then ideally cause sufficiently engaged participants to consider several highly plausible
conclusions for their final report.
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Figure 1: Study Procedure for Facewise and READIT.

3.3 Procedure

Figure 1 illustrates the general procedure of this study for Facewise and READIT. We first
created a virtual hub using the web-based software platform Qualtrics (Qualtrics, 2020) for
participants to access and complete the study. After random assignment to one of the two
conditions (High-MAST or Low-MAST) by the researchers, participants were asked to input
their given participant IDs on the first page of Qualtrics. Next, informed consent approved
by our Institutional Review Board (IRB) was obtained. Then, participants were given a
description of their task scenarios. To facilitate engagement and a sense of risk in the study
scenario, in all conditions participants were told that they were being tasked to complete
an important assignment, and that a previous agent assigned to their post failed in their
respective tasks and was put on probation and subsequently demoted. After reading the task
descriptions, participants then received a short training on their respective DSSs by watching
a recorded video demonstration of the interface and features, and responding correctly to
quiz questions about the video. All DSS versions were presented as technology aids that
exist to supplement the participant’s own abilities. Afterward, participants performed the
study task using their respective DSS. Lastly, participants were asked to evaluate the system
and their experience by responding to questionnaires including the MAST criteria, risk,
benefit, trust, credibility, engagement, and usability. Given our targeted population of
subject matter experts in national security, limited optional demographic information was
collected to assess the representativeness of our sample population.

3.4 Data Analysis

Data analysis was accomplished in JMP (SAS Institute Inc., 2023) and R using “dplyr”
(Wickham, François, Henry, & Muller, 2019), “psych” (Revelle, 2018), “Rmisc” (Hope, 2013),
and “compareGroups” (Subirana, Sanz, & Vila, 2014). Figures were created using “ggmap”
(Kahle & Wickham, 2013) and (Auguie, 2017). To confirm associations between the MAST
checklist and measures of trust, credibility, and other validated metrics, we performed the
analysis in three steps. First, we explored if there are differences between the Low-MAST
and High-MAST groups with respect to the dependent variables identified above. Secondly,
linear associations between the individual metrics and the averaged MAST rating were
separately established using simple linear regression. Multivariate analysis via principal
components analysis (PCA) was then performed on the perceptual metrics for dimension
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reduction. Finally, we regressed the MAST ratings with the principal component (PC) scores.
PCA was employed to find coherent and appropriate structures in the perceptual metrics
within the first few principal components (Bandalos, 2018). To compare the different levels
of Facewise and READIT, Analysis of Variance (ANOVA) was used. In addition, linear
regression was used to further investigate the strength and directionality between MAST
and other survey measures.

4. Experiment 1: Facewise

Participants in the Facewise experiment were told that they were airport security officers
tasked to screen passengers by checking their identification materials with the assistance of
Facewise, and they had roughly 30 minutes to complete a series of identification verification
tasks which is roughly the length of an officer’s shift in the document checker position
(Greene, Kudrick, & Muse, 2014). Figure 2 outlines the similarities and differences between
the two levels of Facewise: High-MAST and Low-MAST. For both levels, Page 1 asks for an
initial judgment of human operators. We adopted this structure based on previous work,
which we found would increase accuracy (Salehi, Chiou, Mancenido, Mosallanezhad, Cohen,
& Shah, 2021). In Page 1 (Figure 2), the left image with an off-white background presents the
ID photo and the right image with an airport background provides a “live” photo, supposedly
taken at the airport. For both levels, these images were cropped and zoomed in for Page
2, which is where most of the differences between High-MAST and Low-MAST appear.
Three red dotted lines highlight these differences including the Crossmark/Checkmarks, AI
confidence, and a “View Details” button. For more details regarding the AI-DSS features
and how they map to each of the MAST criteria, please refer to Appendix A.

4.1 Participants

A total of 152 subject matter experts, U.S. Transportation Security Officers (TSOs), were
recruited from three major U.S. airports in Arizona, Nevada, and California, split across
11 days of data collection at the participating airports. Six participants were removed
due to very high response time and low accuracy, resulting in 73 participants each for
the High-MAST and Low-MAST conditions. On average, participants spent 76 minutes
to complete the entire study, including onboarding and responses to questionnaire items.
Because participants were federal employees, we were not permitted to provide compensation
despite their participation being voluntary and outside of their regular duties. Therefore,
light refreshments were provided to appreciate their participation in the study. Because
all participants were volunteers and not required to participate, we assumed they were
sufficiently motivated by our study objectives to complete this study to the best of their
ability. Table 5 in Appendix F reports the available participant demographics across the
Facewise conditions. Race, ethnicity, and gender items were not collected or reported due to
expressed concerns by some of our collaborative partners, given our limited population of
subject matter experts, and the sensitive nature of this information.
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(a) Facewise High-MAST

(b) Facewise Low-MAST

Figure 2: Facewise High-MAST (top) and Facewise Low-MAST (down). Red dashes highlight
the differences between Low and High platforms. Compared to the Facewise Low-MAST,
High-MAST version has more interactive features including the ID expiration check, AI
confidence level, and “View Details” page.

4.2 Results and Discussion

Table 1 reports descriptive statistics including mean (M) and standard deviations (SD) for
the study variables. Results of F statistics in Figure 3 (a) show that participants in the
High-MAST group rated Facewise higher across all nine MAST criteria, and this difference
was significant. The higher trust ratings in High-MAST compared to Low-MAST was also
significantly different for the Jian et al., 2000 score. The High-MAST group found Facewise
less risky than the Low-MAST group. Moreover, the High-MAST group rated Facewise
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more beneficial than those in the Low-MAST group. No significant difference in credibility
ratings was found between the two conditions, possibly due to the similar presence of errors
by Facewise in both levels. While the High-MAST group spent significantly more time on
the task than the Low-MAST group, performance was not significantly different between the
two groups. The High-MAST group made slightly more accurate decisions than Low-MAST,
but this difference was not significant. No significant differences in engagement and usability
were found between the High-MAST group and Low-MAST group, supporting our goal of
designing both versions to be relatively equal in terms of levels of engagement and perceived
usability.

Regression analysis shows that MAST ratings are positively associated with trust ratings;
people who rated trust highly also tended to rate MAST highly. Increasing the MAST score
by 1 would increase one of the trust scores (Jian et al., 2000) by 0.1 (F (1, 144) = 64.94,
p < .001, β = 0.1, R2 = 0.31) and the other trust score (Chancey et al., 2017) by 0.12
(F (1, 144) = 87.83, p < .001, β = 0.12, R2 = 0.37). A positive relationship between MAST
and credibility scores was also found; increasing the MAST score by 1 would increase
credibility by 0.11 (F (1, 144) = 62.96, p < .001, β = 0.11, R2 = 0.30). Figure 4 shows
the regression plots. Furthermore, this study found that there was a negative correlation
between MAST and risk score; increasing the risk score by 1 would decrease the MAST score
by 2.2 (F (1, 144) = 24.32, p < .001, β = −2.2, R2 = 0.14). Finally, there was a positive
relationship between the MAST and benefit score; increasing the benefit score by 1 would
increase the MAST rating by 3.7 (F (1, 144) = 71.89, p < .001, β = 3.7, R2 = 0.33).

To further validate the association between MAST and other study variables, we needed
to run multiple regression analysis. However, because trust (Jian et al., 2000; Chancey et al.,
2017), risk, benefit, and credibility were highly correlated, it is inappropriate to run multiple
regression analyses. Therefore, we applied PCA to reduce the dimensionality within our
dataset. The result of PCA shows that the first two principal components explain 84.06% of
variation within the dataset. The first principal component can be perceived as an overall
average of trust, risk, benefit, and credibility, while the second principal component is mainly
related to negative perceptions about risk. These two principal components were used as
new variables for a linear regression analysis with MAST performed for each level, High-
and Low-MAST. We found that MAST-total (aggregating all MAST criteria) was highly
associated with the first principal components (F (1, 144) = 100.92, p < .001, β = 0.19,
R2 = 0.41). Figure 5 provides additional details about PCA and regression results.

5. Experiment 2: READIT

READIT participants were told they were intelligence analysts in a fictional major city
in the United States who are tasked with monitoring the news for any ongoing threats to
public safety. READIT participants were given a specific assignment to use READIT to
quickly locate and search through relevant news articles and uncover a terrorist activity that
had gone unnoticed for the previous five months. Figure 6 illustrates the similarities and
differences between the High-MAST and Low-MAST levels of READIT. Four red dotted
lines highlight the differences including the availability of “documents” and “about” tabs
(Appendix D), the “topic clusters” bubble graph, the sorting option by cluster relationship
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Facewise READIT
High Low p High Low p

MAST-total 26.5 (5.73) 21.0 (5.77) < 0.001∗ 27.8 (5.38) 19.9 (5.14) 0.002*
1. Sourcing 2.85 (0.84) 2.48 (0.90) 0.011* 3.27 (0.47) 2.50 (1.17) 0.05*
2. Uncertainty 2.85 (0.83) 2.32 (0.97) < 0.001∗ 2.91 (0.70) 2.42 (0.79) 0.129
3. Distinguishing 3.19 (0.78) 2.15 (0.88) < 0.001∗ 3.27 (0.65) 2.25 (0.87) 0.004*
4. Alternatives 2.79 (0.82) 2.33 (0.91) < 0.001∗ 2.91 (0.94) 1.25 (0.45) 0.001*
5. Relevance 3.00 (0.69) 2.34 (0.89) < 0.001∗ 3.18 (0.75) 3.17 (0.72) 0.961
6. Logic 2.97 (0.87) 2.07 (0.96) < 0.001∗ 3.18 (0.87) 2.25 (0.97) 0.024*
7. Change 2.88 (0.83) 2.51 (0.82) 0.008* 2.82 (0.75) 1.75 (0.97) 0.007*
8. Accuracy 2.82 (0.87) 2.42 (0.82) 0.005* 3.18 (0.75) 1.92 (0.67) < 0.001∗
9. Visualization 3.14 (0.75) 2.42 (0.86) < 0.001∗ 3.09 (0.94) 2.42 (0.90) 0.095

Trust (Jian) 4.62 (1.12) 4.18 (1.15) 0.023* 5.11 (0.95) 4.42 (1.08) 0.119

Trust (Chancey) 4.26 (1.28) 4.00 (1.16) 0.188 4.57 (1.25) 3.73 (1.35) 0.135
Chancey (Performance) 4.24 (1.42) 3.95 (1.28) 0.188 4.85 (1.31) 3.93 (1.47) 0.126
Chancey (Process) 4.68 (1.39) 4.52 (1.36) 0.472 4.76 (1.56) 4.48 (1.53) 0.669
Chancey (Purpose) 3.87 (1.28) 3.53 (1.16) 0.093 4.09 (1.15) 2.77 (1.20) 0.013*

Risk 2.67 (1.11) 3.10 (1.09) 0.021* 2.55 (0.93) 3.33 (0.89) 0.05*

Benefit 3.37 (0.99) 3.01 (0.98) 0.031* 3.45 (0.93) 3.00 (1.13) 0.303

Credibility 4.31 (1.24) 4.23 (1.29) 0.712 5.39 (0.96) 4.44 (1.03) 0.033*

Average response time
(seconds)

13.3 (4.87) 11.3 (4.46) 0.010* 274 (90.7) 214 (93.6) 0.137

Performance
(in Platforms)

0.77 (0.08) 0.75 (0.07)
0.097
(accuracy)

2.82 (1.94) 3.33 (1.67)
0.505
(report)

Engagement 3.96 (1.07) 3.99 (1.10) 0.874 4.37 (0.78) 4.52 (1.28) 0.736

Usability 3.58 (0.70) 3.65 (0.60) 0.494 3.49 (0.94) 3.90 (0.67) 0.248

Table 1: Means, Standard Deviation (in parentheses), and p-values of study variables for
High-MAST and Low-MAST groups across Facewise and READIT platforms. Asterisk(*)
emphasizes the significant differences.

(a) Facewise (b) READIT

Figure 3: The F -test results and corresponding p-values for significant variables in (a)
Facewise and (b) READIT are displayed as grey bars and black dots, respectively.

strength, and the complete news pieces. For more details regarding the AI-DSS features and
how they map to each of the MAST criteria, please refer to Appendix B.
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Figure 4: Least Squares Regression plots for Facewise.

(a) PCA

(b) Linear Regression

Figure 5: PCA (top) and Linear regression (down) results for Facewise.

5.1 Participants

A total of 25 Intelligence Analysts (IAs) from the U.S. Department of Homeland Security
(DHS) were recruited to complete our study, administered through Microsoft Teams or
Zoom, over a period of 19 days. Two participants were unable to complete the study due to
unexpected scheduling restrictions. The resulting High-MAST and Low-MAST versions of
READIT were tested with a sample of 11 and 12 IAs, respectively. On average, participants
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(a) High-MAST READIT

(b) Low-MAST READIT

Figure 6: High-MAST READIT (top) and Low-MAST READIT (down). Compared with the
Low-MAST READIT, High-MAST READIT has more interactive features (Topic Clusters,
Topic Similarity, original documents, clickable timelines, etc.) to demonstrate the MAST
criterion.

spent 75 minutes to complete the study, including onboarding and responses to questionnaire
items. We were not permitted to compensate participants monetarily because they were
federal employees. However because participants were self-selected volunteers who responded
to our recruitment script and were willing to spend time completing our study, we assumed
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Figure 7: Least Squares Regression plots for READIT.

they were sufficiently motivated to complete this study to the best of their ability. Table 6
in Appendix F reports the participant demographics per condition.

5.2 Results and Discussion

Table 1 reports descriptive statistics including mean and standard deviations for the study
variables. Results show that the High-MAST group rated READIT higher on the MAST
checklist than the Low-MAST group, and this was significantly different for six out of nine
MAST criteria (i.e., except for uncertainty, relevance, and visualization). Trust ratings were
also generally higher for those in the High-MAST group; however, the difference is only
significant for the “purpose” dimension of the Chancey et al., 2017 trust score. Moreover, the
High-MAST group compared to the Low-MAST group found READIT less risky to use, and
more credible. No significant differences in performance were found between High-MAST
and Low-MAST groups in terms of average response time, or on their 250-word report,
although descriptively the Low-MAST group spent less time completing the task and had
higher performance scores than the High-MAST group. No significant differences were
found in engagement and usability ratings between High-MAST and Low-MAST groups,
supporting our intent to keep the different READIT versions roughly equivalent in terms of
levels of engagement and usability. Figure 3 (b) shows the F values of significant variables
in READIT.

Regression analysis showed that MAST ratings are positively associated with trust
ratings. There is a positive relationship between MAST and both the trust scores (Jian et al.,
2000; Chancey et al., 2017); increasing MAST by 1 increases one of the trust scores (Jian
et al., 2000) by 0.13 (F (1, 21) = 32, p < .001, β = 0.13, R2 = 0.58) and increases the other
trust score (Chancey et al., 2017) by 0.16 (F (1, 21) = 35.29, p < .001, β = 0.16, R2 = 0.61).
A positive relationship was also found between MAST and credibility scores; increasing the
MAST score by 1 would increase credibility ratings by 0.14 (F (1, 21) = 52.46, p < .001,
β = 0.14, R2 = 0.70). Figure 7 shows the regression plots. This study also found that there
was a negative relationship between MAST and risk score; increasing the MAST score by 1
would decrease perceived risk by 4.9 (F (1, 21) = 24.89, p < .001, β = −4.9, R2 = 0.52). In
addition, there was a positive relationship between MAST and perceived benefit; increasing
the benefit score by 1 would increase MAST by 4.2 (F (1, 21) = 17.19, p < .001, β = 4.2,
R2 = 0.42).
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Because trust (Jian et al., 2000; Chancey et al., 2017), risk, benefit, and credibility were
highly correlated for the READIT platform, we did not run multiple regression and instead
used PCA. The PCA results show that the first two principal components can explain
87.66% of variation within the dataset. The first principal component can be interpreted
as an overall average of trust, risk, benefit, and credibility. However, the second principal
component was primarily related to negative perceptions about risk. For all observations,
two PC scores were calculated using each principal component and these scores served
as the regressors for further analysis. We found that averaging across all MAST criteria
to produce a MAST-total score can significantly predict the first principal components
(F (1, 144) = 60.07, p < .001, β = 0.26, R2 = 0.74). Figure 8 provides more details about
the PCA and regression results.

(a) PCA

(b) Linear Regression

Figure 8: PCA (top) and Linear regression (down) results for READIT.

6. General Discussion

In this study, we recruited subject matter experts to interact with an AI-DSS in their field,
either Facewise or READIT, and tested two different levels of each DSS, a High-MAST
version or a Low-MAST version. We discuss our findings with respect to the experts’ ratings
of these systems using MAST, validated trust questionnaires, other perception metrics, and
joint system performance. Finally, we elaborate on our analysis of the MAST items and
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participant perceptions, and conclude with some caveats regarding our study approach and
findings.

Overall MAST ratings. The application of MAST to both Facewise and READIT
resulted in notable differences in MAST ratings. Under High-MAST conditions, Facewise
achieved higher scores across all criteria (9/9), while READIT achieve higher scores on 6
out of the 9 criteria. This difference between Facewise and READIT indicates that the
type of system and use context matters when applying the MAST checklist. For an image
processing and signal detection type outputs like Facewise, using MAST to evaluate elements
like accuracy, source reliability, and user interface clarity may be more straightforward, as
reflected in the consistently higher ratings across all criteria in the High-MAST condition.
In contrast, READIT as a text summarization system is riddled with the complexities of
natural language processing model outputs and the semiotics of text interpretation. For
example, our team was particularly challenged in designing appropriate visualizations for
model outputs and explanations that could distinguish between High-MAST and Low-MAST
READIT systems. In the end, the MAST ratings for the Visualization criterion were not
significantly different. Moreover, the lack of statistical significance between the Uncertainty
and Customer Relevance criteria may also point to High-MAST design features that had
marginal to no impact. In the Low-MAST system, uncertainty measures such as tf-idf and
cosine similarity scores (see Appendix B) were omitted, unlike in the High-MAST system
where they were included. The results could suggest that these uncertainty scores were either
ineffective in conveying uncertainty or were implemented in a manner that limited their
usefulness. The same observation applies to the feature of filtering by location and topic,
which was incorporated specifically to meet the Customer Relevance criterion, and was a
distinguishing feature between the two system versions. The rating similarities between the
systems could indicate that these features did not significantly influence users’ perceptions
of Customer Relevance.

Perceptions of trust. Evaluation of the Facewise systems revealed significantly different
trust ratings (as per Jian et al., 2000), with higher ratings observed for the High-MAST
condition. In contrast, the higher trust ratings observed in the High-MAST READIT system
compared to its Low-MAST counterpart were not statistically different. This discrepancy
may have stemmed from the smaller participant pool evaluating the READIT system, leading
to increased standard errors in the observed differences. It was a challenge to recruit for
READIT, given the relative inaccessibility of remotely-recruited working intelligence analysts
relative to the on-site recruited Transportation Security Officers, and the general challenge of
recruiting subject matter experts to volunteer participation in research studies. Additionally,
for the trust constructs in the Chancey et al., 2017 questionnaire, the Facewise systems
did not exhibit significant differences, despite the Jian et al., 2000 ratings demonstrating
otherwise. We speculate that this might be due to the nature of the Jian et al., 2000
questionnaire items being valenced both negatively and positively whereas for the Chancey
et al., 2017 questionnaire, the items are all positively valenced. Prior research has shown
that item valence can affect responses in trust measures (Gutzwiller, Chiou, Craig, Lewis,
Lematta, & Hsiung, 2019), and that negatively valenced trust items may result in more
variable responses compared to positively valenced trust items (Schroeder, Chiou, & Craig,
2021). More research is needed to investigate why these two instruments measuring the same
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construct could result in different responses (e.g., (Long, Sato, Millner, Loranger, Mirabelli,
Xu, & Yamani, 2020)).

Despite being evaluated by a considerably smaller group of participants, the READIT
systems demonstrated a notable difference in the Chancey et al., 2017 trust measure, but only
on the Purpose dimension. No other differences were evident in other trust measurements. It
is important to note that the “purpose” items in Chancey et al., 2017’s measure are designed
to assess participants’ belief in the READIT system’s ability to assist them in their tasks
or missions, even amid uncertainties or perceived errors. This difference in ratings could
therefore be linked to the inherent challenges and semiotic nature of text summarization
tasks, as opposed to the more straightforward outcome of face recognition tasks. The higher
rating for the “purpose” dimension in the High-MAST READIT group suggests that users
valued the system and its associated features as a helpful tool in summarizing massive
amounts of documents.

Other user perception metrics. Comparative analysis of other user perception metrics
revealed that high-MAST versions of the decision support systems generally led to reduced
perceived risk and enhanced perceptions of benefit and credibility, aligning with our initial
hypotheses. However, for READIT the “benefit” ratings were not significantly different
between versions, and for Facewise, “credibility” ratings were not significantly different
between versions. Notably, these items exhibited greater variability, indicating divergent
perceptions of Facewise’s credibility, likely influenced by the model’s errors in tasks that may
have been easy for our expert participants. In READIT’s Low-MAST group, the “benefit”
ratings varied more, suggesting that some of the analysts who participated in the study still
found the system useful with respect to the imagined increased task load that would have
come from manually inspecting the raw document data on their own.

In terms of “engagement” and “usability”, we observed no significant differences between
the High- and Low-MAST versions for both platforms. This uniformity in perceived
engagement and usability ratings indicates a consistent user experience. Although this
outcome was not a deliberate objective when we designed the platforms, we were careful to
maintain this consistency in the low and high-MAST versions to minimize the impact of
usability or ease of use on the evaluation of the systems.

Joint system performance. Neither platform showed significant differences in system
performance between the High and Low-MAST versions, whether in face-matching accuracy
for Facewise or the report score for READIT. This aligns with prior research suggesting that
AI transparency or trustworthiness alone does not necessarily result in improved human
performance (Schelble, Lancaster, Duan, Mallick, McNeese, & Lopez, 2023; Palanski &
Yammarino, 2011). The absence of observed differences in our study could also be attributed
to factors such as limited variation in the image database for Facewise, and the use of
under-optimized AI algorithms common to both versions. In the case of READIT, despite
clarification in the participant onboarding video, there might still have been some confusion
among participants on how to interpret the bubble graph topic clusters. We discovered this
issue during pilot tests with non-expert participants, who mistook the size of the bubble
graph topic clusters for importance rather than topic frequency in the anomaly detection
task. We attempted to correct this in our onboarding video by clarifying how to interpret
the bubble graph, but ultimately we did not test to confirm their understanding or use
of the bubble graph, which was one of the more salient differences between the High- and
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Low-MAST versions of READIT. Designing the READIT interface was challenging due to
project time constraints and the need to balance the presentation of detailed information
with ease of navigation on a single browser page, without overly guiding participants to the
correct answers. Future research could further refine these AI-DSS testbeds, improving AI
performance, task variation, and optimizing the level of information detail in the interfaces.

Association between MAST and user perception metrics. Principal Components
Analysis (PCA) and Principal Components Regression (PCR) were conducted to assess
whether MAST could accurately capture key constructs from well-established user perception
metrics. These metrics, which show significant marginal associations with MAST ratings,
include trust measures from Jian et al., 2000 and Chancey et al., 2017, and measures of
benefit, credibility, and risk. The primary goal of PCA in this context was to produce
comprehensive summaries that capture the majority of variation within these metrics. The
analysis showed that for both platforms, the first two eigenvalues accounted for over 80% of
the total, suggesting that the first two principal components are sufficient in explaining the
majority of variation in the data.

In both Facewise and READIT, the first principal component (PC) uniformly displayed
positive loadings for all metrics except risk. This consistent pattern across both platforms
indicates that a uniformly weighted average of these metrics, negatively weighted for risk,
effectively captures the essential constructs of user perceptions in the evaluated technologies.
Conversely, the second PC showed significant positive loadings exclusively for risk and
benefit. This pattern suggests that participants tend to conduct a risk-benefit analysis,
with the pronounced loading on risk indicating a stronger focus on risk assessment when
evaluating AI systems.

The regression analysis of the first two PC scores against the MAST ratings revealed
significant associations with the scores of the first PC, but not with those of the second.
This finding indicates that the MAST ratings predominantly align with the factors captured
by the first PC. Since the first PC primarily reflects a uniformly weighted combination
of the user perception metrics, with an inverse weighting for risk, it can be inferred that
MAST ratings are similar to an averaged rating of these metrics. This suggests that MAST
effectively captures a broad spectrum of user perceptions, particularly trust, benefit, and
credibility, while inversely accounting for risk. However, the lack of association with the
second PC, which focuses more on risk-benefit analysis, implies that MAST may not fully
capture the nuances of how users weigh risks against benefits when evaluating AI-enabled
technologies such as Facewise and READIT. These potential nuances would further speak to
the challenge of soliciting input on some of the MAST criteria, input that may vary widely
depending on the experience level and perspectives of the responding stakeholders (Ananny
& Crawford, 2016).

Study limitations. The AI-DSSs in this study were intentionally designed to align with
either High-MAST or Low-MAST ratings. This methodology might invite criticism because
the MAST tool, which required validation, was also employed in designing the experimental
manipulations. However, we assert the validity of this approach based on the independence
of the raters (i.e., the recruited study participants). The participants evaluating the
technologies were not involved in the design process, nor the development of MAST, ensuring
that their ratings were independent of self-serving biases. Further, intentionally aligning the
designed features with the MAST checklist was necessary for the internal validation of the
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tool. This designed distinction allowed us to assess whether MAST, as an evaluative tool,
could effectively differentiate between technologies with varying MAST alignment levels.
Establishing internal validity serves as a foundation toward a broader collaborative effort to
validate the tool externally. Additionally, this study sets a benchmark for future applications
of MAST as a tool across various technological domains and ecological contexts.

Although MAST ratings were highly associated with trust, our results do not factor in
whether trust or distrust levels were calibrated with system performance. Such an analysis
may be possible for Facewise, in which system reliability can be precisely gauged using signal
detection metrics. In contrast, trust and distrust calibration is difficult to precisely define for
the READIT platform because it does not offer direct recommendations or answers that could
be rated as easily. Future studies should consider these different forms of decision support,
and how those different forms can affect trust responses (Chiou & Lee, 2023). Finally,
although the signals were strong for READIT, we could not reach our intended sample size
within the timeline we had, due to the challenge of recruiting intelligence analysts. Lastly,
this study was focused on the use and validation of MAST specifically; a comprehensive
review and comparison of MAST against other similar frameworks would be a valuable
exercise, but beyond the scope of this project. Other literature has reviewed similar tools
for trust assessment (Kohn et al., 2021; Alsaid et al., 2023), and MAST might be used in
conjunction with some of these other tools alongside a work-centered field-based approach
(Roth, Bisantz, Wang, Kim, & Hettinger, 2021) to achieve a more comprehensively designed
and functionally trustworthy system.

7. Conclusion and Future Directions

The primary objective of this study was to establish the utility of the Multisource AI
Scorecard Table (MAST) for evaluating the trustworthiness of AI-enabled decision support
systems (AI-DSSs). This resulted in an interesting opportunity to evaluate whether the
tradecraft standards behind MAST are related to the existing tools developed by the
scientific community of trust researchers. The results of our study show strong associations
between MAST and trust assessments across two domains of application. While MAST was
initially conceptualized for intelligence reporting tools like READIT, by testing two AI-DSSs
developed for different mission critical tasks, and with field experts, we also demonstrated
the utility of MAST across high-consequence domains, and that these patterns of associations
persist with automated identity verification systems as well.

Compared to other frameworks for designing or evaluating AI-DSSs, a benefit of MAST
is that it is derived from and operationalized by a practitioner community (Blasch et al.,
2021). Thus, the underlying principles of MAST are more likely to be “customer relevant”
and accepted by the Intelligence Community, while aligning with an empirical and scholarly
understanding of trust and credibility that we report here. However, just as high quality
analytical reporting may not translate into good decision making, it is important to note
that high MAST ratings do not necessarily translate to improved performance of a human-
AI decision system, given the variety of factors that can contribute to this performance,
including factors in the task environment, cognitive workload (Sargent, Walters, & Wickens,
2023), available system features, and task difficulty. Furthermore, it is still possible that
high intended MAST ratings by a design team may not translate to actual perceptions and
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subsequently higher ratings, or actual benefit by a user of the system. Additional testing
should be done with other AI systems, including key factors in the organizational and task
environment (Chiou & Lee, 2023), and more formal risk analyses. In-depth exploration
of the behavioral data captured during task performance may also shed light on the gap
between trust perceptions and trustworthiness.
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Appendix A. The Nine MAST Criteria for Facewise

MAST item Questions and Feature Descriptions

Sourcing
How well can the system identify underlying sources and methodologies
upon which results are based?
High-MAST: The “View Details” page provides the name of image
sources and demographical information about the people whose image
data were used to train the AI, such as their race and gender.
Low-MAST: The system interface does not include the name of image
sources and demographical information about the people whose image
data were used to train the AI system, such as their race and gender.

Uncertainty
How well can the system indicate and explain the basis for the uncer-
tainties associated with derived results?
High-MAST: For each pair of images, the system will display a
certainty score from 0%-100% to indicate its confidence about its
recommended decision. The system also gives an alert if the uncertainty
is too high when you click the “Final Decision” button, depending on
your decision. Details about how the system calculates the certainty
score are available by clicking on the “More Details” button under every
decision. The AI’s confidence level is calculated in this manner: first,
a metric that signifies the mathematical distance between two image
pairs is calculated. Then, the difference between the mathematical
distance and a pre-determined (computed during the training and
validation stages) threshold is calculated. Finally, the difference is
normalized by a factor and the confidence level is calculated using
probability measures associated with the standard normal distribution.
Thus, the AI’s confidence is an indication, based on the predetermined
threshold. Confidence levels closer to 100% indicate higher confidence.
Low-MAST: For each pair of images, the system only recommends a
binary decision (same or different) and does not indicate its confidence
in the decision.

Distinguishing
How well can the system clearly distinguish derived results and under-
lying data?
High-MAST: The system can distinguish whether a presented ID is
invalid or expired, or if the ID photo may have been digitally altered.
An alert message will be automatically shown in these cases by the
system. Details about how the system identifies these features in the
ID photo are available by hovering over the Crossmark or checkmark
icon next to the ID expiration date.
Low-MAST: The system cannot distinguish whether a presented ID
is invalid or expired, or if the ID photo may have been digitally altered.

Analysis of
Alternatives

How well can the system identify and assess plausible alternative
results?
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High-MAST: In the “View Details” page, the system provides dis-
similarity and similarity probabilities as alternatives for each pair. The
similarity and dissimilarity numbers are directly derived from the AI’s
confidence level. The higher of the two probabilities is selected to
represent the AI’s confidence level. The calculation of the similarity
and dissimilarity probabilities assumes that the threshold is distributed
as standard normal, and that the scaled differences are realizations of
a noise-generating process. Both probabilities are calculated using the
scaled difference between the distance metric and the threshold.
Low-MAST: For each pair of images, the system only gives a decision
and does not indicate its confidence in the current decision based on
the training and validation stages, nor on probability measures of
alternatives associated with the standard normal distribution.

Customer
Relevance

How well can the system provide information and insight to users?
High-MAST: Besides providing the binary decision of same or dif-
ferent, the confidence level, and ID validation on the main page, the
system provides additional details through a ”More Details” button.
This includes information and explanations about similarity, dissimi-
larity, confidence level, and sources of training for AI. To present the
information more efficiently, the system will minimize explanations
that have already been shown. Conditional alerts when the system’s
certainty level is low and alerts about individuals who may need addi-
tional screening per the protocol are also included as part of the system
with the information displayed as detected.
Low-MAST: Besides providing the binary decision of the same or
different and ID expiration date on the main page, the system does
not provide any additional details or any conditional alerts.

Logic
How well can the system help the user understand how it derived its
results?
High-MAST: The system bases its final decision by choosing the larger
of similarity and dissimilarity probabilities. “More Details” button
also provides an explanation and interpretation of how a prediction or
classification is made. Conditional alerts when the system’s certainty
level is low, and alerts about individuals who may need additional
screening per the protocol are also included. To detect the authenticity
of an ID photo, a second model was trained, tested, and validated on
proprietary datasets of anomalous and non-anomalous travel documents,
digitally altered and original images. A separate model further performs
character recognition to analyze expiration dates on travel documents.
Low-MAST: The system does not give any information on how its
recommendation is determined. It also does not provide any conditional
alerts or any information about the authenticity or validity of the ID
photo image.

Change
How well can the system help the user understand how derived results
on a topic are consistent with or represent a change from previous
analysis of the same or similar topic?
High-MAST: As you interact with the system, by clicking “more
details” you will see a report about your agreement with the system,
which indicates how often the system has been uncertain about your
final decisions.
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Low-MAST: As you interact with the system, the system does not
indicate how often it has been uncertain about your final decisions.

Accuracy
How well can the system make the most accurate judgments and
assessments possible, based on the information available and known
information gaps?
High-MAST: For each pair of images, the system will display a
certainty score from 0%-100% to indicate its confidence about its
recommended decision. System’s performance according to the training
data and more details about how the system calculates the certainty
score are available by clicking on the “More Details” button under
every decision.
Low-MAST: For each pair of images, the system only gives a binary
decision and does not indicate its confidence in the decision, the system’s
performance according to the training data, or more details about how
the system made the decision.

Visualization
How well can the system incorporate visual information if it will clarify
an analytic message and complement or enhance the presentation of
data and analysis? Is visual information clear and pertinent to the
product’s subject?
High-MAST: The system automatically shows you an enlarged version
of a traveler’s ID photo and their photo taken at the security checkpoint.
These images will be shown side by side. Distinguishing features that
played a big role in determining the recommended decision will also be
highlighted by clicking the “View Details” button.
Low-MAST: The system only shows you an enlarged version of a
traveler’s ID photo and their photo taken at the security checkpoint
without any additional visualized explanation about the recommended
decision.

Table 2: MAST (Blasch et al., 2021) and Facewise feature descriptions for High-MAST and
Low-MAST.
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Appendix B: The Nine MAST Criteria for READIT

MAST item Questions and Feature Descriptions

Sourcing
How well can the system identify underlying sources and methodologies
upon which results are based?
High-MAST: In the documents page, you can see descriptive in-
formation about the documents (data) used to gather the clusters
including basic information and detailed descriptions of the sources.
The datasheet for READIT includes information on the clustering
model, models for summarization, training data, possible biases, pre-
processing of data, and quality of the data used in training to derive
results. In the main dashboard view, you can view the data used to de-
rive the cluster either by hovering or clicking on it including the cluster
title, number of documents, top terms, and representative documents.
The representative documents can be viewed as a summary (derived
result) or raw version.
Low-MAST: For any given cluster in the main dashboard view, you
can view more details about it by clicking on it. The title of the
cluster, number of documents, and summaries of the documents will
be displayed in the documents and summaries pane. Only the derived
results are shown, not the underlying sources and data used to derive
the clusters or summaries.

Uncertainty
How well can the system indicate and explain the basis for the uncer-
tainties associated with derived results?
High-MAST: READIT indicates levels of uncertainty with derived
results in two ways, as described in the datasheet. First, READIT
includes keywords per cluster to show how documents in clusters
are related to each other. Keywords are displayed with a term fre-
quency–inverse document frequency (tf-idf) score which measures the
certainty the word fits with the cluster. Second, READIT includes
similarity scores to assess the similarity between clusters. This score is
calculated using cosine similarity to show the certainty that clusters
are related to each other.
Low-MAST: In the topic similarity visualization, the relationship
between two topics is colored from white to dark blue with dark
blue indicating a higher certainty the two topics are related. These
relationships are not labeled with numbers, neither is it explained how
this similarity is calculated.

Distinguishing
How well can the system clearly distinguish derived results and under-
lying data?
High-MAST: For any given cluster you can view more details about
the data used to derive the cluster either by hovering or clicking on
it. The datasheet for READIT includes information on the clustering
model, models for summarization, training data, underlying assump-
tions for choice of training data, quality of the data used in training
to derive results, possible biases, pre-processing of data, recommended
uses and users, and restrictions on use. The datasheet was created
with domain expert input.
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Low-MAST: When opening or clicking on clusters, you can view more
details about that cluster. The title and summary of representative
documents will appear. The raw data used to derive the title and
summaries is not displayed. There is no datasheet with information on
how these titles or summaries are calculated.

Analysis of
Alternatives

How well can the system identify and assess plausible alternative
results?
High-MAST: In the topic similarity visualization, users initially
view the visualization where the topics are ordered alphabetically. By
factoring in the similarity score and uncertainties, READIT can reorder
the view in this visualization such that highly related topics will appear
together to present an alternative view.
Low-MAST: READIT is not able to show alternative results when
uncertainties in the data warrant them. There is no way to reorder
visualizations based on any criteria.

Customer
Relevance

How well can the system provide information and insight to users?
High-MAST: READIT synthesizes large corpora of documents and
produces clusters of similar documents. The topic similarity visualiza-
tion shows which clusters are most highly related to each other. Users
can examine the clusters and their relationships in the topic similarity
view for trends for follow-up work. READIT is also able to suggest
locations to filter by if the documents contain multiple locations. Users
can also filter all visualizations by topic. There is a topic filtering
pane where users can check all, or some topics and the corresponding
selected topics will be highlighted in the visualizations.
Low-MAST: READIT synthesizes large corpora of documents and
produces clusters of similar documents. The topic similarity visualiza-
tion shows which clusters are most highly related to each other. Users
can examine the clusters and their relationships in the topic similarity
view for trends for follow-up work.

Logic
How well can the system help the user understand how it derived its
results?
High-MAST: For any given cluster you can view more details about
the data used to derive the cluster either by hovering or clicking on it.
The datasheet includes information on pre-processing of data. READIT
includes an option to filter results by location, if location information
is detected in the document. To give location options, READIT must
consider the location information in the context of the document,
and other assumptions about the embedding of the location in the
document.
Low-MAST: When clicking on clusters in the main view, you can
view the title and representative documents in summary form. The
titles and summaries are understandable to users. Information on how
clusters, titles, and summaries are formed is not included. There is
also no information on the pre-processing of data.

Change
How well can the system help the user understand how derived results
on a topic are consistent with or represent a change from previous
analysis of the same or similar topic?
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High-MAST: In the documents page, READIT includes information
on similar searches from other agencies. Similar searches may be based
on the average length of the document, number of documents, or
number of clusters generated.
Low-MAST: READIT does not have a way to note changes from
previous analyses or similar analyses. READIT also cannot compare
current results with those of other agencies which had similar results.

Accuracy
How well can the system make the most accurate judgments and
assessments possible, based on the information available and known
information gaps?
High-MAST: The READIT datasheet includes information on system
verification and validation methodology, and results from the training
data where the system achieved sufficiently high accuracy. To assess
the accuracy of READIT, users can view the full documents used in
each cluster and compare them against the top terms to independently
determine whether the documents match the top terms. Likewise, users
can view a summary of the document and compare it against the full
version of the document in the documents and summaries view to see
if the summary is accurate.
Low-MAST: READIT does not include information on system verifi-
cation, validation methodology, or information on the training of the
system where it achieved sufficient accuracy. Since underlying sourcing
information and raw data are not included in the system, it is difficult
to assess whether the topics and summaries are accurate.

Visualization
How well can the system incorporate visual information if it will clarify
an analytic message and complement or enhance the presentation of
data and analysis? Is visual information clear and pertinent to the
product’s subject?
High-MAST: READIT uses three main visualizations to enhance
users’ understanding of the clusters. First, in the topic overview visual-
ization, clusters are displayed as bubbles where the size of the bubbles
can indicate anomalies. Next, READIT also creates and displays a
topic similarity visualization to help understand the connections be-
tween clusters. Lastly, there is a timeline view in READIT to display
clusters on a timeline (if documents contain date information). All
visualizations are simple and labeled properly. Users can view more
details about the visualizations by clicking on them or hovering over
them or filtering all visualizations by cluster using the filtering option.
Low-MAST: READIT uses two visualizations. The similarity matrix
shows the similarity scores between topics. Darker colors indicate more
similarity but score values are not shown. The timeline shows the
clusters on the timeline. Visualizations contain no interactivity and
users are not able to click or hover on items to view more details about
the visualizations.

Table 3: MAST (Blasch et al., 2021) and READIT feature descriptions for High-MAST and
Low-MAST.
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Appendix C: Study Questionnaires

Variables Reference Example item(s) Number
of items/
Reverse
items

Scale Facewise
Cron-
bach’s
Alpha

READIT
Cron-
bach’s
Alpha

MAST-
total

(Blasch et al.,
2020)

Sourcing, uncertainty,
distinguishing, analy-
sis of alternatives, cus-
tomer relevance, logical
argumentation, consis-
tency, accuracy, and vi-
sualization

9/0 9 - 36 .91 .91

Risk (Weber et al.,
2002)

Please indicate how
risky you perceive it is
to use this system for
completing your task
well.

1/0 1 - 5 - -

Benefit (Weber et al.,
2002)

Please indicate how ben-
eficial you perceive it
is to use this system
for completing your task
well.

1/0 1 - 5 - -

Trust
(Jian)

(Jian et al.,
2000)

“I can trust the sys-
tem.”; “The system
looks deceptive.”

12/5 1 - 7 0.90 0.92

Trust
(Chancey)

(Chancey et
al., 2017)

“I understand how the
system will help me per-
form well. “; “The infor-
mation the system pro-
vides reliably helps me
perform well.

15/0 1 - 7 0.96 0.96

Credibility (Appelman &
Sundar, 2016)

“How accurate do the
results of the system ap-
pear to be?”; “How be-
lievable do the results
of the system appear to
be?”

3/0 1 - 7 0.92 0.92

Engagement (Schaufeli et
al., 2002)

“I was immersed in this
research task.”; “To me,
this research task was
challenging.”

17/0 1 - 7 0.91 0.93

Usability
(SUS)

(Brooke,
2020)

“I felt very confident
using the system.”; “I
thought the system was
easy to use.”

10/5 1 - 5 0.80 0.88

Task
performance

- Average response time
and Accuracy for Face-
wise and final report
gradings for READIT

2/0 0 - -

Table 4: Dependent and Control Variables.
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Appendix D: READIT Documents and About Tabs for the High-MAST
Version

(a) Documents tab (b) About tab

Figure 9: Documents and About tabs in High-MAST READIT platform.
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Appendix E: 95% Confidence Interval Figures

Figure 10: Means with 95% Confidence Intervals for Facewise and READIT across different
levels of Low-MAST and High-MAST. We used for Facewise and for
READIT.
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Appendix F: Participant demographics for Facewise and READIT

High-MAST (n = 73) Low-MAST (n = 73)

Years of experience as a TSO
55% 3 years or less 50% 3 years or less
24% 10 or more years 28% 10 or more years

Highest degree
69% 2-year college or less 74% 2-year college or less
26% 4-year college 21% 4-year college

Volunteer hours in the past 3
months

62% 0 hours 71% 0 hours

Computer habit 58% daily 65% daily

Gaming habit
18% daily 26% never 30% daily
26% never 17% never

Screen hours before study
Mean: 2 hrs. Mean: 2.2 hrs.
Median: 1.2 hrs. Median: 2 hrs.

Table 5: Participant demographics across High-MAST and Low-MAST for Facewise.

High-MAST (n = 11) Low-MAST (n = 12)

Age
36% 30 years or less 34% 30 years or less
18% 31-39 years 33% 31-39 years
46% 40 or more years 33% 40 or more years

Gender
73% man 50% man
27% woman 50% woman

Race 82% white 83% white

Years of experience as an IA
18% 2 years or less 25% 2 years or less
27% 3-5 years 17% 3-5 years
55% 6 years or more 58% 6 years or more

Experience with AI-DSS 46% no prior experience 33% no prior experience

Highest degree
27% 4-year college 17% 4-year college
73% master’s 66% master’s

17% doctorate

Experience with VAST challenge 100% no 100% no

Experience with clustering tools 55% no 33% no

Screen hours before study
Mean: 5.5 hrs. Mean: 5 hrs.
Median: 6 hrs. Median: 5 hrs.

Table 6: Participant demographics across High-MAST and Low-MAST for READIT.
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