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ABSTRACT 

 
High throughput plant phenotyping has gained significant 

interest in the plant science community due to its potential 

impact in advancing the use of advanced plant genetics for 

problems ranging from global food security to biomass-

based energy crops. While traditional collection of field-

based phenotypes is manual, automated remote sensing-

based methods can reduce the manual requirements, expand 

the number of sampled points, and accelerate associations 

with genotypes. In this preliminary work, we use multiple 

types of features derived from multi-temporal UAV-based 

hyperspectral and RGB image data for prediction of 

sorghum biomass. Considering the nonlinear properties of 

the spectral input features, multiple layer perception (MLP) 

neural networks and support vector regression (SVR) are 

explored for predicting dry biomass. The analysis is 

conducted on datasets acquired during June-August 2016 

over an agricultural test field at the Agronomy Center for 

Research and Education (ACRE) at Purdue University.  

 

Index Terms— Automated phenotyping, regression, 

hyperspectral data, RGB images 

 

1. INTRODUCTION 

 

Plant phenotyping refers to quantification of the effects of 

the measurable characteristics (e.g.. plant height, leaf counts, 

and biomass).  While plant genomes can now be sequenced, 

the relationship between phenotypes and genotypes is not 

well understood.  The relationship is often represented as 

P=G X E X M, where phenotypes are related to genotypes, 

environmental conditions (E) and management practices 

(M). Traditional phenotyping is based on manual data 

collection, which is extremely time consuming and 

laborious, thereby limiting observations and thus ultimately 

in relating phenotypic information to genomic data. 

Automated image-based phenotyping approaches for field 

crops have become popular with plant breeders [1], [2]. 

These approaches are non-destructive and non-invasive and 

can help accelerate the linkage of associations with 

genotypes, thereby leading to reduced breeding cycles for 

acquisition of desired traits. Unmanned aerial vehicles 

(UAVs) have recently become relevant for plant 

phenotyping because of their capability to acquire high 

spatial resolution data with accurate positioning “on 

demand” when weather conditions are favorable – 

potentially resulting in high temporal resolution data sets 

throughout the critical times of the growing season [3].  

Remotely sensed data from sensing modalities can 

provide complementary information for phenotypic analysis. 

For example, leaf counts and plant heights are geometrically 

based and can be derived from high resolution RGB data, 

while the chlorophyll content is related to spectral 

reflectance features. Although combining multi-sensor, 

multi-temporal data can typically increase prediction 

accuracy of models, significant challenges must be 

addressed in developing robust supervised predictive models 

due to the high dimensional input features and nonlinear 

relationships.  

In this work, we investigate two nonlinear statistical 

learning algorithms, MLP and SVR, for prediction of dry 

biomass. The results and analysis provide useful insights on 

feature importance for prediction and demonstrate the ability 

of estimating the biomass from remotely sensed data.   

 

2. DATA ACQUISITION AND FEATURE 

EXTRACTION 

 

In this preliminary study, two imaging modalities: RGB and 

hyperspectral images acquired from UAVs were considered 

for feature extraction and predictive learning.  

 

2.1. Data Acquisition 

 

Data were acquired for 18 sorghum varieties over an 

agricultural sorghum field with at the Agronomy Center for 

Research and Education (ACRE) at Purdue University 

during the 2016 growing season. Fig. 1 shows the ground 

reference map for the field. Colored rectangles indicate 144 

field plot boundaries, including 72 high density (223,000 

plants/ha) plots (two columns close to the west side), and 72 

low plant density (52,000 plants/ha) plots (two columns 

close to the east side), with 18 in the N-S direction and 8 in 
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the E-W direction, where twelve rows were planted in each 

plot. 

The RGB data were collected by a Sony Alpha 7R 

camera with 35mm lens mounted on a DJI S1000+ 

multirotor platform. The Sony camera, acquired imagery at a 

data rate of 1 frame every 1.2 seconds from a flying height 

of 55m, with the platform moving at a speed of 10 m/s. The 

camera was operated with a full resolution of 35 megapixels 

(7360-by-4912 pixels/image), resulting. in a GSD of ~ 

0.75cm. The hyperspectral data were acquired by a 

Headwall Nano-Hyperspec push-broom scanner with a 

12mm lens onboard a fixed-wing UAV platform. The system 

collected 272 bands at ~2.2nm spectral resolution and 640 

pixels per scan line, operating at a scan rate of 230 lines/s. 

Navigation data were acquired by an Xsense MTi-G-700 

GPS/IMU unit attached to the camera. The UAV was flying 

at a speed of 13m/sec at ~100m altitude . The corresponding 

GSD for this flight configuration was ~6cm.  

 

  
Fig. 1. Ground reference map for the sorghum field. 

 

2.2. Feature Extraction 

 

Disparate features from both RGB and hyperspectral images 

were extracted at the plot level including: 

 

(1) Plant height histogram: photogrammetrically based 

height maps were generated from the RGB images through 

dense matching [4]. Plant heights were then obtained by 

comparing the derived geospatial coordinates over time. Fig. 

2 shows the height difference map obtained on 07/15/2016 

relative to the height map derived from 06/24/2016 heights. 

Brighter colors represent greater growth between these 

dates.  The high density plants are generally taller than low 

density plants. To capture the height distribution in each 

plot, the histogram was computed for each plot using 25 

equally spaced bins. The counts were normalized to sum to 

one [5]. The histogram of the plant height is shown in Fig. 3 

for one variety (SP SS405 FS) across the growing season. 

The figures clearly show the plant growth patterns differ.  

Other RGB-based features were considered, including leaf 

counts, but did not improve predictions. 

 

 

            
              Fig. 2. Height difference map for the sorghum field on 07/15/2016 

 

 
Fig. 3. Histograms of incremental growth in SP SS405 FS sorghum relative 

to 06/24 

(2) Spectral features: the hyperspectral data were 

geometrically and radiometrically corrected. For the 

geometric correction, the data were orthorectified in a two 

stage process, first using the Headwall SpectralView 

software based on the GPS/IMU data from the Xsense, and 

then fine-tuned by co-registering to the RGB based 

orthophoto [6]. The raw hyperspectral data were first 

converted to radiance using SpectralView then calibrated to 

reflectance using FLAASH. Shadows and data from noisy 

bands beyond 900nm were removed. The mean spectrum 

over the entire plot was used to represent the plot spectral 

information, and the spectral feature vector includes 113 

bands. Fig. 4 shows the true color composite of the 

hyperspectral data (left) collected on July 11, 2016, and the 

mean spectrums for three plots (right).  
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Fig. 4. True-color composite of the hyperspectral data (left) and plot level 

spectrums (right). 

 

 (3) Spectral indices: spectral indices are very useful for 

analysis of the health of vegetation. Multiple hyperspectral 

indices were explored, including: (a) SR705=R750/R705, (b), 

ND705=(R750-R705)/(R750+R705),  

(c) mSR705=(R750-R445)/(R705-R445), (d) mND705=(R750-

R705)/( R750+R705-2R445), (e) NDVI=(R800-R670)/(R800-R670), 

where SR represents simple ratio and ND represents 

normalized difference. mSR705 (mND705) is a modified 

version of SR705 (ND705). R445 was subtracted from all 

reflectance values to compensate for specular reflectance. 

We used the mSR705 index in the models, as yielded good 

results for our data.  

 

3. METHODOLOGY 

 

To predict the biomass using the derived features from both 

RGB and hyperspectral data, nonlinear models are preferred 

since linear models are unable to characterize the nonlinear 

scattering phenomena. Two nonlinear regression models 

were developed, Support Vector Regression (SVR) and 

Multi-Layer Perception (MLP).  

In the remote sensing community, Support Vector 

Machines (SVM) have been demonstrated to be effective for 

classification. SVR is similar to SVM but focused on 

predictive models [8]. A Gaussian radial basis function 

kernel  
2

( , ) exp( )i j i jK   x x x x was adopted, where   

was the width of the kernel function. Using this kernel, the 

input data are mapped into a low dimensional space where a 

linear regression can fit the data, Overfitting was avoided by 

using a regularizer on the estimated coefficients. The kernel 

parameter   and the regularizer weighting parameter were 

tuned through cross validation during the training process. 

Multi-Layer Perceptron (MLP) is an artificial neural 

network with one or more hidden layers of neurons. It is 

capable of modelling highly nonlinear functions between the 

input and output. It forms the basis of deep-learning neural 

network (DNN) models, and has been widely used in 

hyperspectral data applications [9]. The MLP model is 

typically trained in three phases, 1) forward phase, the input 

features are incorporated into the network, and computations 

across layers are conducted using the current set of weights, 

2) backward phase, the error between the ground reference 

data and the predicted values at the output layer is computed 

and propagated successively back through the network to 

update the weights. In this study, a five layer MLP model 

was designed, with one input layer, three hidden layers and 

one output layer. (See Fig. 5). In the input layer, the number 

of neurons was equal to the number of input features, and 

the output layer had only one neuron, which represented 

predicted dry biomass. For the three hidden layers, the 

numbers of neurons were experimentally set to 512, 256 and 

8.  

 

 
 

Fig. 5. Proposed MLP architecture for biomass prediction.  

 

4. EXPERIMENTAL RESULTS 

 

4.1. Experimental Design 

 

Experiments were conducted on 72 high density plots, 

containing 18 varieties with 4 replicates. The ground 

reference measurements for dry biomass were collected on 

08/04. Features were extracted from a time series of UAV 

image data, including 1) hyperspectral data acquired on 

06/24, 07/11, and 08/04, and 2) RGB data acquired on 

06/21, 06/30, 07/15, 07/19, 07/27, and 08/02. Different 

combinations of features at multiple-times were explored for 

biomass prediction. Table 1 contains details for each 

experiment. We randomly partitioned the 72 plots and used 

4-fold cross validation to evaluate the performance of our 

models. Four rounds of experiments were conducted, such 

that, 54 plots were used for training and 18 plots were used 

for testing in each round.  

 

4.2. Results and Analysis 

 

The SVR and MLP models were trained as described in 

Section 3, and ten experiments were conducted with 

different input features as shown in Table 1. The averaged 

results from the four-fold cross-validation are listed in Table 

2.  Root mean square error (RMSE) and R2 were used to 

evaluate the model predictions. The results show that Exp 4-

10 in general have better performance than Exp 1-3, 

indicating that combining height and spectral data improved 

the prediction ability, although the model based on 7/11 

spectral data had about the same predictive capability. Also, 

the R2increased as more features from multiple dates were 

incorporated, especially for the SVR model. Interestingly,  
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Table 1 Experimental design with different combinations of input features 

 
Table 2 Biomass prediction accuracies for different experiments 

 
#  Exp SVR MLP 

RMSE (g/m2) R2 RMSE (g/m2) R2 

1 205.28 0.48 213.83 0.43 

2 179.33 0.58 180.36 0.60 

3 265.17 0.13 274.88 0.04 

4 220.44 0.46 239.00 0.37 

5 187.42 0.61 188.40 0.61 

6 178.89 0.65 199.19 0.55 

7 174.11 0.66 188.60 0.61 

8 161.31 0.71 188.38 0.61 

9 155.41 0.73 184.15 0.62 

10 148.02 0.76 196.30 0.57 

 

we see that the SVR model in general performs better than 

the MLP model. This is likely because the ground reference 

data for biomass were extremely limited, and the large 

number of weighting parameters associated with the high 

dimensional features could not be properly learned.  To 

further investigate the MLP model, learning curves for the 

loss function, training accuracy and the testing accuracy are 

shown in Fig. 6. As the number of iterations grows, the 

training accuracy also increases, while the testing accuracy 

increases first and then decreases, which clearly shows that 

overfitting occurred in the training phase. 

 

 
 

Fig. 6. Learning curves for of MLP for Exp 10;  

     loss error;        training acc;       testing acc; 

 

 

 

 

      

5. CONCLUSIONS 

 

Two nonlinear regression models were developed to predict 

sorghum biomass using remotely sensed data from UAV. 

Experimental results show that combining spectral and 

height features and multiple dates can result in better 

prediction performance than using either a single type of 

feature or features from a single date. However, due to the 

limited quantity of ground reference data, the performances 

of the models were suboptimal, especially for MLP, as it 

typically requires a large quantity of training samples to 

learn the optimal weights. We are investigating data 

augmentation strategies to generate additional training data. 

Data from other modalities thermal and LiDAR will also be 

acquired in the future, and evaluated for improving the 

model. 
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#  Exp Spectral Features+Spectral Index Height Histogram 

1 06/24 -- 
2 07/11 -- 
3 08/04 -- 
4 06/24 06/21 
5 07/11 06/21+06/30 
6 08/04 all six dates 
7 06/24+07/11 06/21+06/30 
8 06/24+08/04 all six dates 
9 07/11+08/04 all six dates 

10 06/24+07/11+08/04 all six dates 
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