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ABSTRACT

Accurate phenotyping with unmanned aerial vehicles is
a remote sensing application that has received recent atten-
tion as plant breeders seek to automate the expensive and time
consuming traditional manual acquisition of measurements of
plant traits. This paper focuses on the prediction of sorghum
biomass utilizing high temporal and spatial resolution remote
sensing data. Two methods are investigated for biomass pre-
diction. The first uses nonlinear regression models to predict
biomass directly from remote sensing data, based on features
from Light Detection And Ranging (LiDAR) point clouds
and hyperspectral data. The second strategy focuses on the
biophysical sorghum crop model, APSIM, first, using remote
sensing data to parametrize the crop model, and then simulat-
ing the biomass. Results from both approaches are provided
and evaluated for an agricultural test field at the Agronomy
Center for Research and Education (ACRE) at Purdue Uni-
versity.

Index Terms— Hyperspectral, LiDAR, phenotyping,
APSIM, crop model, biomass prediction, machine learning

1. INTRODUCTION

Obtaining plant biophysical traits through automated pheno-
typing using remote sensing is advantageous because tradi-
tional field measurements of different phenotypes including
plant height, leaf counts, and above ground biomass are
expensive and time consuming to obtain. Multiple studies
have demonstrated that these phenotypes can be estimated
using remote sensing data for both large and small agricul-
tural fields [1][2][3]. Biomass is an important phenotype
that indicates the crop condition that is appropriate for crop
monitoring and yield estimation [4].
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Two primary approaches are used to estimate biomass us-
ing remote sensing data. The first method focuses on regres-
sion or neural network based models to find an empirical re-
lationship between the biomass and remote sensing features.
In [5], a partial least squares regression model was used to es-
timate above ground biomass of grasslands. Multiple features
were extracted from hyperspectral data, including the original
reflectance, first order derivative reflectance, and band-depth
indices to estimate biomass. A random forest regression algo-
rithm was used in [6] to model and predict wetland biomass
in a high density, vegetated wetland. The prediction accuracy
using the regression models depends on many factors. The
importance of sample size, data type, and prediction method
for remote sensing-based estimations of above ground forest
biomass were studied in [7]. The authors demonstrated that
the accuracy of the biomass estimates was highly dependent
on the prediction method and data type, and less dependent on
sample size for their data. The two main drawbacks of empir-
ical methods are that they usually require a large number of
samples to build an accurate regression model [3], and that
they are local models, that is, they are not applicable to other
areas and dates.

Alternatively, remote sensing data are incorporated into
crop simulation models by calibration, forcing, or updating
methods [8]. The Agricultural Production Systems sIMulator
(APSIM) dynamic simulation model is capable of predicting
the growth and productivity of plant species based on plant
genetics, environmental conditions, and management prac-
tices [9]. The main drawback of simulation models like AP-
SIM is that they require numerous input parameters. How-
ever, if the input parameters are accurate, they predict pheno-
types with high accuracy [9].

In this paper, both strategies using remote sensing data for
biomass prediction are implemented and evaluated. Figure 1
illustrates the general workflow of this paper for biomass pre-
diction. For empirical models, two nonlinear statistical learn-
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Fig. 1. The biomass prediction analysis flow.
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ing algorithms are used. To build the APSIM crop model,
leaf counts per plant, plant stand count, leaf area index (LAI),
tiller number per plant, leaf size distribution, extinction coef-
ficient of canopy (K), and radiation use efficiency (RUE) are
needed [9]. Some parameters were estimated using field mea-
surements in 2015 for eighteen hybrid sorghum genotypes.
Leaf appearance rate, one of the ground based inputs to AP-
SIM, was instead estimated using Unmanned Aerial Vehicle
(UAV) RGB images acquired weekly during the 2017 grow-
ing season at ACRE. The details of estimating leaf appearance
rate are described in Section 3.2.

2. DATA SET AND FEATURE EXTRACTION

2.1. Field Ground Truth Data

Eighteen genotypes of sorghum were planted in twelve row
plots in the test field. Figure 2 shows the ground reference
map for the study field. Colored boxes indicate 72 field plot
boundaries, with eighteen in the N-S direction and four in
the E-W direction. Ground truth biomass data were acquired
using a biomass harvester for all 72 plots on July 31st and
September 27th in 2017.

PH 849F FS

RS 327x36 BMR FS
RS 366x58 FG white
RS 392x105 BMR FS

RS 400x82 BMR SG

SP NK5418 GS
SP NK8416 GS

SP Sordan Headless FS PS

Fig. 2. Eighteen hybrid sorghum variates color coded in
ground reference map with 72 plots. Each variety was planted

(a) RGB image
Fig. 3. Remote sensing data acquired in August 30th.

(b) LiDAR data (c) Hyperspectral data

2.2. Remote Sensing Data

The RGB images were collected on a weekly basis between
June 21st and August 30th in 2017 by a Sony Alpha camera
on-board a DJI M600 multi-rotor platform at an altitude of 40
meters and velocity of 8m/s. Figure 3 (a) shows an example
RGB image acquired on Aug 30th. The ground resolution for
RGB images is 1 cm per pixel.

The LiDAR data were collected on the same day as the
RGB images at an altitude of 20 meters and UAV velocity
of 8m/s. Both the RGB and LiDAR systems were integrated
with an Applanix APX-15 GNSS system to provide precise
positioning. Figure 3 (b) shows one of the LiDAR data sets
acquired on Aug 30th. From LiDAR data, the 50, 75, and 95
percentile heights for each plot were extracted and used in the
regression models.

The hyperspectral data were acquired by a Headwall Nano
VNIR push-broom scanner on-board a multirotor UAV plat-
form approximately weekly between June 21st and Septem-
ber 10th in 2017. Each image has 136 bands, 4 cm spatial res-
olution, and 5 nm spectral resolution. An Applanix APX-15
GNSS system was fixed to the hyperspectral line camera for
georeferencing the data. Figure 3 (c) shows the RGB bands
of hyperspectral data acquired on August 30th. In this study,
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Fig. 5. Area under mean reflectance signature of some vari-
eties (left) and the cumulative area over the season (right).

three types of features were extracted from the hyperspectral
data and used in the regression models: original reflectance
data, vegetation indices, and the area under the average of
the spectral curves for each variety on a given date. Figure 4
shows the average for one variety for ten dates during the
summer of 2017. Figure 5 shows the area under mean spec-
tral curve for each date (left) and the cumulative area over the
time (right).

3. METHODOLOGY

3.1. Biomass Prediction using Regression Models

In this work, two nonlinear regression models are developed,
Support Vector Regression (SVR) and Multi-Layer Percep-
tion (MLP). The parameter setting for SVR and MLP is de-
scribed in our previous work [3]. Three-fold cross validation
was used to test all the regression models.

3.2. Biomass Estimation using APSIM

The APSIM crop model simulates the crop growth in a given
environmental condition by incorporating weather data (ac-
tual or predicted), soil conditions, water information, and
plant management strategies. All the parameters required by
the APSIM model are available through the standard sorghum
model except those which are cultivar specific, including leaf
appearance rate, tiller number per plant, leaf size distribu-
tion, extinction coefficient of the canopy, and radiation use
efficiency. This work focuses on the calculation of leaf ap-
pearance rate for 18 hybrids, based on ground reference data
and remote sensing data, with other parameters being esti-
mated from manual observations. Leaf appearance rate is
the number of days required for appearance of successive
leaf tips. The daily temperature has a significant impact on
sorghum growth [10]. The accumulated growing degree days
(GDDs) are associated with the measurements of the appear-
ance of two consecutive leaves. The leaf counts derived by
image processing algorithms described in [11] for two days,
June 16th and June 21st, were used to calculate leaf appear-
ance rate, assuming the relationship between accumulated
GDD and number of visible leaves is linear.
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Fig. 6. Biomass prediction results
LiDAR data.

using hyperspectral and

4. RESULTS AND DISCUSSION

Figure 6 shows the results of predicting biomass for 72 plots
based on hyperspectral and height features extracted from the
remote sensing hyperspectral and LiDAR height features on
dates prior to the biomass harvest. R? values of 0.07 and 0.19
were obtained for the SVR and MLP for the July 31st biomass
data. The R? values for biomass prediction at the end of the
season, September 27th, are 0.48 and 0.55 by SVR and MLP,
respectively. Given that there are eighteen genotypes in the
current field and some have very different characteristics, the
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R? value for the combined data is relatively good.

Figure 7 shows the leaf appearance rate estimated from
field measurements (LAR-GT) and RGB images (LAR-RS).
The LAR-RS is higher for most of the varieties. Figure 8
shows the biomass simulations for one of the varieties ob-
tained by the APSIM crop model using the leaf appearance
rate estimated from weekly field measurements (APSIM-
GT), and RGB images (APSIM-RS). The field measurements
of biomass for both July 31st and September 27th are also
shown. In this case, the APSIM-RS under-estimates the July
31st biomass data, but over-estimates for September 27th,
when the APSIM-GT yielded better results. The R? values
for both simulations are shown in Figure 9. Examining eigh-
teen hybrids for three replicates and two dates, the simulated
biomass tends to be under-estimated at the early date, and is
poorly estimated at the later date and particularly for highly
productive varieties. The leaf appearance rate derived from
the RGB images is generally greater than the value from the
manual measurements, resulting faster leaf area growth and
higher predicted biomass, as shown in Figure 8.

5. CONCLUSION AND FUTURE WORK

In this paper, two methods for biomass prediction were ex-
plored. The MLP regression model predicted the end of the
season biomass with relatively high accuracy. Further stud-
ies will focus on multi-temporal feature extraction/selection.
The APSIM crop simulation model was based on parameters
derived from ground based and remote sensing data. The leaf
appearance rate derived from images would have been more
accurate if additional early season data had been acquired.
Further, late season values were impacted by the complexity
of the canopy, potentially resulting in counting leaf segments,
and redundancy on multiple dates. Use of other remote sens-
ing derived inputs to APSIM is also being investigated.
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