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Abstract on their domain knowledge and observations of the

The ongoing and evolving COVID-19 pandemic has
resulted in tremendous negative effects on people’s
daily lives. It is critical for decision makers such as
health care officials and governors to foresee potential
impacts and make timely decisions. We present PanViz
2.0, a visual analytics application that combines an
epidemic model and Al-driven analytics to infer the
best-fit parameters to enable the adaptation to ongoing
pandemics at multiple spatial aggregations (nation
wide, state level, and county level). Our experiments for
predicting the fatality cases in each county of the state of
Oklahoma demonstrate the flexibility of our application
in adapting to various scenarios and regions.

1. Introduction

Decision makers need to make effective and timely
decisions to respond to the evolving threats posed
by a pandemic. Often, these decision makers are
called upon to make highly consequential decisions
using data collected from a variety of geographically
and temporally disparate sources — ranging from
hospital capacity to social media posts — within
a relatively short-time frame. However, the size,
complexity, and scope of the data presented to these
decision makers make it difficult to assess the short-,
medium-, and long-term consequences of a decision
without substantial analytical support. Decision support
systems, especially visual analytic systems, can help an
individual make informed decisions during pandemic
conditions.

Traditionally, epidemic models have been applied to
predict the percent of a population that will be affected
by influenza. Specifically, multiple parameters such
as global infection rate, mortality rate, hospitalization
rate, the speed of transmission (measured by miles per
day for a person-to-person contact model) contribute
to the final prediction. Decision-makers, such as
health care officials, can provide some parameters based
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ongoing pandemic to improve prediction accuracy and
efficacy. Therefore, it is critical to use an interactive
visual analytics application to assist the exploratory
investigation and refinement of what-if scenarios in
order to provide improved mitigation.

We adopt an automatic approach to speed up
the parameter investigation process since fine-tuning
a set of parameters simultaneously is tedious and
time-consuming. The integration of Al-based
optimization approaches in an interactive visual
analytics environment can expedite the discovery of
best-fit parameters in various scenarios for different
pandemics and a range of spatial aggregates (e.g.,
nation wide, state level, and county level). Furthermore,
the parameters recommended by the AI approach
have specific physical meanings in an epidemic
model. Decision-makers can inspect the recommended
parameters and decide if they match the ongoing
situation and gain further insights by setting the
parameters to preferred ranges that most effectively
represent the evolving situation.

In response to the COVID-19 global pandemic,
we developed an Al-integrated application based upon
the original PanViz, a visual analytics application
for supporting pandemic preparedness through a
tightly-coupled epidemiological model and interactive
interface [1], to accommodate the new patterns and
dynamics of COVID-19 and infer best-fit model
parameters. In this paper, we summarize our
contributions as the following:

e We develop an interactive web application
that incorporates epidemiological modeling and
temporal and spatial visualizations

* We incorporate Al inference techniques to
recommend optimal parameters for improved
modeling flexibility and predictions of different
pandemic scenarios and spatial ranges

* We provide an example of COVID-19 model
fitting for Oklahoma, a southern state in the USA
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2. Background

The spread of Ebola in the US during 2014
demonstrated how detecting and responding to a disease
early are key steps to avoiding and mitigating the
short—, medium—, and long—term effects of pandemics
on population health [2, 3]. However, effective
detection and response to a pandemic are nontrivial,
requiring the use of accurate information, advanced
analytics, and predictions to carefully plan various
interdiction/mitigation strategies. The recent COVID-19
pandemic has demonstrated excellent progress in
collecting useful, timely pandemic data throughout the
world, including novel sources such as social mobility
data and public health electronic surveillance data, to
assess and prevent the disease spread. While these
data sources can greatly improve situational awareness,
facilitate effective mitigation response, and provide
feedback on current public health policies, they are
often incomplete and biased. Further, the size and
complexity of these data sources create difficulties,
as decision-makers may not be able to appropriately
compare and assess the outcome of different interdiction
strategies without computational support.

One method to provide this computational support
to decision makers comes from the development of
visual analytics systems. VA tools and techniques
allow decision-makers to address complex problems that
require tightly-coupled human and machine analysis
to develop effective solutions. In the context of
pandemic response, decision-makers can utilize VA
systems to efficiently compare differences (e.g., near-
and long-term effects) between various intervention
methods, such as the effect that mask wearing will have
on disease spread.

Pandemics occur on a geospatial scale that can
be difficult for individuals to fully comprehend. On
an intuitive level, people understand that regions with
smaller, distal populations will experience the first
recorded case later than large population centers near
the origin of the outbreak. =~ While this heuristic
understanding is largely correct, a county health official
cannot reliably predict when a disease will appear nor
inform the public of steps to take to prevent further
spread using naive models.

VA systems, such as PanViz, can be designed
to clearly communicate complicated and nuanced
findings from statistical epidemiological models to
a larger audience. For example, the conventional
deterministic Susceptible, Infectious, Recovered (SIR)
epidemiological model is widely adopted to estimate
the number of infected people in a closed population.
PanViz [1] introduced a visual analytics application

to assist interactive exploration of what-if scenarios,
such that users can dynamically refine the parameters
of an epidemic model in order to obtain the number
of infected, deceased, and recovered individuals.
Besides developing an epidemic model based on SIR,
PanViz offers the ability to take preventive measures
(e.g., school closure, social distancing) to reduce the
disease spread. Additionally, spatial (choropleth map)
and temporal (line charts) visualizations are utilized
in PanViz to illustrate the geographical distribution
of infected population at the county level.  The
effectiveness of PanViz has been verified by health
care officials. However, it is still challenging to
find out the best-fit parameters since PanViz uses
pre-defined parameters to generate the prediction
results. It is tedious and repetitive to fine-tune
multiple parameters simultaneously. In this paper,
we build upon the epidemic model used in PanViz
and automatically recommend parameters to adapt to
COVID-19 scenarios.

3. Related Work

In this section, we organize literature into three
categories:  decision support systems, COVID-19
modeling, and visual analytics for COVID-19.

3.1. Decision Support Systems

One of the primary concerns that arises when using
epidemiological models to map the spread of a disease
such as COVID-19 is the inherent complexity of how
these models function. A decision maker, or more
generally a member of the public, may intuitively
understand the relationship between population density
and the rate at which a disease spreads within a
community. These intuitive, heuristic models are
beneficial when making decisions under duress. The
psychology underpinning the benefit of heuristics stems
from the fact that simplification supports humans in
coping with limited information processing capacities.
However, hueristics can be easily biased by what data is
currently available and how it is presented [4, 5].

Al enabled decision support systems have been
proposed as a solution to enable humans to make better
decisions when faced with uncertainty. The primary
benefits of using Al include the ability to discern
complex patterns and relationships in large volumes
of data. Al enabled decision support systems have
been successfully used in clinical diagnostics [6, 7],
operational efficiency [8], inventory management [9],
and military decision making [10]. Any discussion
of AI enabled decision support systems would be
incomplete without mentioning the inherent limitations
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of AI in decision making. These limitations include:
a lack of transparency in how the system is assessing
different outcomes and the potential to reinforce or
obscure preexisting biases or trends in the data [11,
12]. Therefore, we adopted epidemic models that have
physical meanings to inform the interpretability of the
underlying model. However, the exact contributions
of a set of model parameters are still obfuscated, as
it is difficult to understand their impacts in isolation.
Therefore, we employ an optimization approach to infer
the best-fit parameters from observed COVID-19 data.

3.2. COVID-19 Modeling

The surge of the COVID-19 pandemic has drawn
high attention in academia. Before the COVID-19
outbreak, respiratory disease research accumulated
sufficient experiences, e.g., modeling the reproduction
number factor in the virus transmission [13]. After
the outbreak, significant preliminary research has
been conducted in a timely manner to investigate
COVID-19 related issues. Punn et al. [14] utilized
traditional machine learning approaches to forecast
confirmed/death/recovered cases worldwide for the
following ten days. Yang et al. [15] modeled the
impact of intervention control policies (e.g., travel
limit, quarantine of epidemic areas) on mitigation of
disease containment. Their model assumed that these
policies could affect population migration dynamics, a
key factor affecting propagation of COVID-19. Their
results revealed that a five-day delay of intervention
policy implementation in China would have increased
infected cases three-fold. In light of overwhelming
hospital service demands, researchers at the Institute
of Health Metrics and Evaluation (IHME) [16] built
statistical models to predict COVID-19 related death
rates and hospital service needs on a daily basis. The
predictions ran at the spatial scale of European countries
or USA states. Policy makers can use these predictions
to enact certain rules to control and reduce disease
spread. However, these works do not integrate visual
interpretability for their models.

3.3. Visual Analytics for COVID-19

There is a body of academic literature that
demonstrates the value of visual analytics in disease
control and prevention. Araz et al. [17] reported
that pandemic response exercises simulated in a
visual analytic environment could increase readiness
of healthcare decision-makers for epidemiological
outbreaks. Malik et al. [18] presented a visual analytic
approach to interactively explore temporal trends of
multiple diseases. PanViz [1] is a visual analytic system

for healthcare departments to interactively simulate their
disease control strategies for an influenza pandemic
in terms of outbreak origins and transmission rates.
Afzal et al. [19] developed an interactive tool for
public health officials and researchers to interactively
explore the impact of their decision points on the
future course of disease spread and mitigation. After
the outbreak of COVID-19, visual analytics has been
immediately applied to analyze relevant data. Dey
et al. [20] conducted the first attempt on COVID-19
data analysis by combining multiple data sources
into a visual analytics environment. Currently, the
COVID-19 trend is evolving rapidly, and the visual
analytics community is urgently needed to incorporate
human observed knowledge to investigate and mitigate
disease contamination. Our work is on this track, as
we developed a flexible and adaptive visual analytics
environment to predict the trend of COVID-19.

4. PanViz 2.0

Determination of optimal disease modelings
involves multiple analytical procedures such as
parameter settings and model comparisons. Visual
analytics can build effective analytic environments
for end users to interactively explore these procedures
and choose appropriate models [21]. To facilitate
such exploratory analysis, we develop the PanViz 2.0
visual analytic framework, a re-engineered version
of PanViz [1, 22, 19] informed by our experiences
in developing and deploying visual analytic decision
support systems over the past 10 years.

PanViz was initially designed for use as a desktop
application, limiting its portablity, scalablity, and
flexibility. PanViz 2.0 builds on the initial visual
design of PanViz while converting the software into
an intuitive web-based application (Fig. 1, 2). This
conversion addresses the portability and scalability
problems outlined earlier, as several users can access
the system from any compatible web browser. Users
can adjust simulation and model parameters (Fig. 1 left
panel), interactively visualize the geographic spread of
the pandemic (Fig. 1 center panel), and visualize county-
and state-level case data (Fig. 1 right panel).

PanViz 2.0 also provides interactive exploration and
analysis of different mitigation strategies. Specifically,
users can place decision points, such as school closures
(Fig. 3), along any part of a trend line to visualize the
effects on infection, death, and hospitalization counts.
Users can control the precise impacts of a given decision
measure by adjusting its infection reduction probability.
This is particularly useful in cases where a decision
measure’s exact impact may not be known a priori
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Figure 1. Overview of PanViz 2.0: (left) control panel to configure model parameters and simulation settings,
(middle) geographic distribution of cases, (right) temporal visualization of infections, fatalities, and
hospitalizations, the light red line indicates the prediction for state level (with corresponding axis on the right side)
and the light blue line indicates the prediction for a selected county (with corresponding axis on the left side).

(such as in novel situations like COVID-19) and should
therefore be experimented with (and updated as new
data are collected) to assess how effective it may or may
not be at different stages of the disease.

Model updates and re-
renders front-end

PanViz 2.0
Front End

User modifies the model
features, parameters, and
parameters to be
visualized

Figure 2. The architecture of PanViz 2.0.

4.1. Base Epidemiological Model

PanViz employs a mathematical epidemiological
model based on the work of Malone et al. [23],
which uses a system of non-linear difference equations
derived from traditional epidemic models to calculate
county-level disease dynamics. PanViz also integrates

airport transportation spread dynamics for improved
modeling. A PanViz 2.0 user can supply county level
population data, including demographics and density,
the observed mortality and recovery rate of the disease,
hospitalization rate, and baseline and modified disease
prevalence (Fig. 4). Disease prevalence is defined as the
percentage of the entire national population that would
be infected with the disease if no action is taken. The
user can also stipulate a custom origin point of the
disease or select a major airport as an origin point. For a
detailed explanation the mechanics of the model, please
see [23, 24].

5. Al-driven Parameter Inference

In this section, we discuss our Al-driven approach
for inferring model parameters to simulate the
COVID-19 pandemic, as well as initial results to
demonstrate its effectiveness.

5.1. Approach

To accurately simulate the COVID-19 pandemic,
we combine PanViz’s base epidemiological model with
machine learning to infer model parameters (e.g., speed
of transmission, mortality rate, etc.). This allows
us to maintain the strong mathematical principles
underlying pandemic dynamics, while also optimizing
the model for different situations (e.g., different state
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Figure 3. Users can place decision points along any

trend line to view their effects on infections, deaths,

and hospitalizations. The green decision point in this

figure corresponds to school closures with an assumed
infection reduction of 25%.

or county data). Similar to the approach used by
covidl9-projections.com, we utilize a simple
but effective machine learning technique called grid
search to identify the optimal parameters.  Grid
search iterates over all possible parameter combinations
(within reasonable intervals as informed by previous
research) and computes the loss for each combination by
comparing the model’s simulated data against observed
data. We use the Root Mean Square Error (RMSE) in
Equation 1 to compute the deviation between prediction
and observation across the pandemic time range, where
y; corresponds to the reported value (ground truth) on
day ¢, g; corresponds to the predicted value on day i,
and N is the total number of days. The optimal model
parameters are derived by minimizing the RMSE:

ey

The specific details of the grid search algorithm used to
minimize RMSE are shown in Algorithm 1.
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Figure 4. User-configurable epidemic model

parameters.

To assess the effectiveness of our approach, we focus
on Oklahoma state COVID-19 data released by The New
York Times'. The data contains the cumulative number
of infections and deaths for each county in Oklahoma
over a 130-day period from March 1, 2020 to July 8,
2020, with gaps on days where information was not
reported. We concentrate our analysis on fatalities, as
the infection numbers vary among different data sources
due to unreliable testing and asymptomatic infection,
although extending our approach to any data source is
straightforward.

We execute grid search (with the fatality data) for
each county in Oklahoma to determine the associated
optimal parameters. We infer values for parameters such
as spread rate speed, peak amplitude, mortality rate,
and decision measure impacts since they may fluctuate

lgithub.com/nytimes/covid-19-data
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Algorithm 1: Grid Search to Minimize RMSE

Result: Output optimal simulation parameter
values and minimum RMSE
letpy ={...},p2={...},....,pe = {...} be the
parameters with respective sets of possible
values;
let P = p; X pa X ... X pg be the Cartesian
product of the parameter sets, resulting in the
set of all possible (ordered) parameter value
combinations;
let min_rmse = oo be the minimum RMSE
value;
let p,,, be the parameter value combination that
yields the minimum RMSE value;
letY = {y1, 92, ..., yn | be the observed
pandemic deaths over IV days;
for Each parameter value combination p. € P
do
initialize simulation;
set simulation with parameter values p.;
run simulation;

letY = {91, Y2, ..., Un } be the simulated
pandemic deaths over IV days;
let rmse = 0;
fori=1toNdo
rmse = rmse + (y; — §i)%
end

rmse
set rmse = N )

if rmse < min_rmse then
setmin_rmse = rmse;

set P, = P

end

end
return p,,, min_rmse;

between different counties. We use fixed values (as
informed by research) for parameters which are unlikely
to change between regions, such as the mean time
to recover, mean time to die, and demographic (age)
impacts.

5.2. Results

Fig. 5 illustrates the predicted (cumulative) fatality
cases compared to the observed cases in Oklahoma
County, OK, after parameter inference with grid search,
which yielded a minimum RMSE value of 2.48. The
dark and light blue lines in the center panel of
Fig. 5 correspond to observed and predicted COVID-19
fatality data, respectively. The inferred parameters, as

shown in Table 1, are a mortality rate of 3.2%, amplitude
(determines peak case number) of 0.0004, peak day
(determines time of maximum peak case number) of
25, spread rate speed of 0.5 miles/day, school closure
infection reduction of 15%, media infection reduction of
10%, and shelter-in-place infection reduction of 25%.

Parameter Inferred Value
Mortality Rate 3.2%
Amplitude 0.0004
Peak Day 25
Spread Rate Speed 0.5 mi/day
School Closure Infection Reduction 15%
Media Infection Reduction 10%
Shelter-in-place Infection Reduction 25%

Table 1. Inferred optimal parameters for Oklahoma
County, OK.

Parameter inference allows decision-makers to make
predictions regarding important future trends, as the
visuals in Fig. 5 also provide the predicted fatality
numbers after the observed data ends on day 130.
Specifically, the number of predicted deaths plateau near
the end, indicating that future observed COVID-19 total
fatalities may also stabilize. It is important to note that
the optimal parameters may naturally fluctuate as more
observed data is collected in the future, although we
expect the model to still predict reasonably well. We
plan to introduce confidence intervals in the future to
account for uncertainty.

Of practical importance is that although the optimal
parameters are derived from the fatality data, they can
be used to infer the infection and hospitalization counts,
as shown in the top and bottom panels of Fig. 5.
This can be useful since, as previously mentioned,
the observed infection and hospitalization data may be
incorrect and misleading due to asymptomatic infection
and unreliable testing.

To assess the reliability and sensitivity of our
parameter inference approach (grid search), we
construct our own test sets since the “ground truth”
parameters are not known (due to the novelty and
ongoing research of COVID-19) and, therefore, we
cannot directly compare the optimal parameters inferred
from grid search. We generate 50 different test sets
by adding random noise from the normal distribution
N(p = 0,0 = 1) to the daily death cases of the
best-fit model (Table 1). We then execute grid search
on each test set to determine how well it can identify
the original best-fit model parameters from the noise.
The result statistics of all test sets for Oklahoma
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County, OK, are shown in Table 2. Specifically, the
averages and standard deviations for the mortality
rate, amplitude, peak day, spread rate speed, school
closure infection reduction, media infection reduction,
and shelter-in-place infection reduction are 3.376
+0.434%, 3.760x 10~ * £ 4.833 x 1077, 24.6 + 2.828,
0.5 + 0 mi/day, 15 + 0%, 10 &+ 0%, and 25 + 0%.
Each of the average values are close to (i.e., = 1o) the
original best-fit parameters in Table 1 (“ground truth”
parameters in this case), with some values remaining
the exact same (e.g., spread rate speed, school closure
infection reduction, media infection reduction, and
shelter-in-place infection reduction). This indicates that
our grid search approach is fairly effective and reliable
at identifying the optimal parameters from noisy data
and, therefore, should provide a close estimate to the
true COVID-19 parameters.

Parameter Average Value
(£ 1o0)
Mortality Rate 3.376 £ 0.434%
Amplitude 3.760 x 10~4+
4.833 x 107°
Peak Day 24.6 + 2.828
Spread Rate Speed 0.5 £ 0 mi/day
School Closure Infection Reduction 15 &+ 0%
Media Infection Reduction 10 £ 0%
Shelter-in-place Infection Reduction 25 + 0%

Table 2. Average and standard deviation of inferred
optimal parameters from 50 generated (noisy) test
sets of daily deaths counts in Oklahoma County, OK.

It is important to note that estimating the
optimal parameters from collected COVID-19 data
is challenging due to the imprecision in the data.
Specifically, the data collection methods and standards
may vary between counties and states and potentially
contain human reporting errors. While this is one
of our primary reasons for focusing on fatality cases
(since they may be more straightforward to report
and less likely to miscalculate), we plan to investigate
soft computing methods such as Support Vector
Machines and Artificial Neural Networks which can
be better equipped to handle data imprecision and
uncertainty [25].

6. Discussion
While traditional models are capable of accurately

simulating the spread of diseases such as Ebola or
Influenza, the accuracy of these models at predicting

Active Cases
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Figure 5. Active, death, and hospitalization cases for
Oklahoma County, OK, with optimized parameters.
The observed COVID-19 data is colored in dark blue.

the spread of novel diseases is potentially limited.
During the early stages of a pandemic, public health
officials may not have a sufficient understanding of
how a disease is transmitted, what the symptoms of the
disease are, and which population demographics are at
increased risk. We know from current epidemiology
studies that COVID-19 spreads from person to person
via respiratory droplets [26, 27], but there is ongoing
research to determine how long it takes for an
individual exposed to COVID-19 to be infected, when
an infected individual can spread the virus, and the
effect of asymptomatic spread [28]. Unraveling this
problem is complicated in regions with low population
densities, counties with limited case histories, areas with
unique characteristics that impact the propagation of
COVID-19 such as a small town with a meatpacking
plant [29, 30, 20], and Native American Reservations
[31]. Due to geographic and economic factors,
these areas are the least prepared for an onslaught
of COVID-19 cases [32, 20]. Further, hospitals and
pharmacies serving low population density areas need
to evaluate how best to utilize their limited budgets and
available resources to meet the upcoming demand. But,
access to reliable information to support the decision
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making process is poor [33, 34].

To account for these uncertainties, PanViz 2.0
ingests collected data to facilitate data-driven
comparisons against model simulations.  Further,
our Al-driven parameter inference allows users to
interactively analyze the optimized model for future
predictions, as well as continue exploring and tuning
the model settings, which can improve situational
awareness and decision-making during pandemic and
public health crises.

Decision measures such as mandated masking
wearing or social distancing are critical for impeding the
spread of respiratory diseases like COVID-19 [35, 36].
However, these measures can be deployed over differing
time scales, making direct comparisons of effectiveness
difficult. PanViz 2.0 allows users to answer questions
about the effectiveness of different intervention regimes
by visually comparing their effects on virus spread and
case numbers.

7. Conclusion and Future Work

As recent news events have shown, the pressures
facing public health officials are immense and
life-altering for thousands of individuals. Even a
decision as seemingly small as when to announce a
particular policy can save the lives of tens of thousands
of individuals. Making these complicated decisions
without computational support can be very difficult.
Through the continued development and refinement of
PanViz 2.0, we aim to provide decision-makers with
a tool to help them synthesize and visualize a wide
variety of data types — ranging from hospital capacity to
Facebook posts — for evaluating the outcomes of various
decisions to further their goal of making life saving
choices.

7.1. Future Work

While real-life data can be useful for tuning
epidemiological models, there is still a degree of
uncertainty regarding future trends. Therefore, we plan
to introduce sophisticated techniques for exploration
of what-if scenarios and interdiction planning by
allowing decision-makers to visually compare different
parameter combinations and their effects on disease
dynamics.  For instance, users may be interested
in assessing how the disease spread changes with
different combinations of hospital capacities, rural and
urban density impacts, and decision measures. Our
previous work on reducing anomaly false positives
while modeling incident occurrence for pandemic
preparedness [24] will also be integrated to provide
trustable predictive analytics.

PanViz 2.0 currently supports Al-driven parameter
inference without human guidance. @~ We plan to
incorporate interactive machine learning for user-driven
parameter learning to improve predictions and
transparency. As an example, users could visualize the
grid search parameter space to investigate reasons for
differences in RMSE and predictions. Further, we plan
to investigate alternative Al modeling approaches. For
instance, multiple probabilistic SEIR model simulations
with different parameters could be used to train machine
learning classifiers such as neural networks to predict
the appropriate parameters. Decision-makers could then
continue to tune and adapt the trained model through
interactive analysis.

We infer model parameters that remain static over
the entire pandemic simulation, although it is likely
that some parameters may vary temporally with disease
spread and interdiction planning phases. We plan to
accommodate this by learning optimal parameter sets
for each temporal phase. For instance, the mortality
rate and disease spread may decrease after certain public
policies are implemented, such as school closures and
mask wearing.
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