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Evaluating the Impact of Uncertainty
Visualization on Model Reliance

Jieqiong Zhao,Yixuan Wang,Michelle Mancenido,Erin K. Chiou,Ross Maciejewski

Abstract—Machine learning models have gained traction as decision support tools for tasks that require processing copious amounts
of data. However, to achieve the primary benefits of automating this part of decision making, people must be able to trust the machine
learning model’s outputs. In order to enhance people’s trust and promote appropriate reliance on the model, visualization techniques
such as interactive model steering, performance analysis, model comparison, and uncertainty visualization have been proposed. In this
study, we tested the effects of two uncertainty visualization techniques in a college admissions forecasting task, under two task
difficulty levels, using Amazon’s Mechanical Turk platform. Results show that (1) people’s reliance on the model depends on the task
difficulty and level of machine uncertainty and (2) ordinal forms of expressing model uncertainty are more likely to calibrate model
usage behavior. These outcomes emphasize that reliance on decision support tools can depend on the cognitive accessibility of the
visualization technique and perceptions of model performance and task difficulty.

Index Terms—Uncertainty, model reliance, trust, human-machine collaborations
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1 INTRODUCTION

A RTIFICIAL intelligence and machine learning (AI/ML)
models have gained traction as decision support tools

in tasks that are highly repetitive, laborious, and/or require
processing copious amounts of data. Despite the benefits
of automation, some application domains that are security-
critical and/or high stakes are not yet amenable to full au-
tomation. Examples include automated baggage screening
systems in airport security checkpoints [1] and models that
predict the chances of parolee recidivism [2]. In these do-
mains, human experts are tasked to corroborate information
from the model and, in some cases, to intervene and/or
to provide a final system decision. This is due to the well-
established fact that, no AI/ML model is perfectly accurate.

A prerequisite for optimizing the performance of
human-AI/ML systems is the appropriate calibration of
the human’s trust in the model’s outputs i.e., the human
should be able to recognize when to rely on model predic-
tions and when to spot flaws in the model’s judgment [3],
[4]. Aligning a human’s perceived trust with the model’s
actual capabilities (i.e., performance, trustworthiness) and
limitations (i.e., uncertainties) in varied operating environ-
ments remains one of the open questions in the design of
AI/ML-enabled systems. Failure to appropriately calibrate
trust results in the over-reliance or under-reliance on the
model’s outputs [5], both of which diminish the benefits
of a joint human-automation system. Trust calibration can
be achieved through various approaches, like providing
information about how decisions are generated by AI/ML
models (e.g., interpretability) or providing information to
qualify weaknesses in the AI/ML model (e.g., uncertainty).
In this paper, we mainly study the latter.
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Trust calibration in AI/ML decision support systems
has been posed as a problem of efficient and effective
communication of the AI/ML’s limitations or imperfec-
tions [6]. In practice, one potential method for revealing a
model’s imperfections to a human counterpart is through
uncertainty awareness. As Tomsett, et al. [7] put it,“while
(model) interpretability makes clear what the system knows,
uncertainty awareness reveals what the system doesn’t
know.” Uncertainty awareness may assist decision makers
and auditors in forming an appropriate representation of the
AI/ML’s limitations so that suitable corrections or adjust-
ments could be made [8], [9]. The estimated uncertainty of a
prediction by an AI/ML model can potentially alert human
decision makers to how that prediction will perform, with
higher uncertainty indicating a higher potential for poorer
performance. Traditionally, the uncertainty of a prediction
is mathematically presented in a probabilistic form. For
people to perceive uncertainty information quickly, effective
visualizations are required to convey the probability scores,
often represented as distributions of a prediction target
within a range. The domain of uncertainty quantification
is expansive and we refer to the comprehensive discussion
in Hüllermeier and Waegeman [10]. Meanwhile, rigorous
quantitative evaluation methods to determine the effective-
ness of uncertainty visualizations in decision making have
been gradually established [11].

To date, few studies have quantitatively measured the
impact of communicating AI/ML uncertainty on model
adoption or rejection, and by proxy trust calibration, in the
use of decision support systems. In addition to the method
of revealing the ground truth and model predictions [12],
Dietvorst et al. [13] communicated a model’s uncertainty
through the outright disclosure of the model’s average error
rate by a text description (i.e., “the model has an average
error rate of x”). These studies tracked how often partic-
ipants selected the model outputs over human judgments
in the presence of model uncertainty. The overwhelming
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Table Histogram Model-prediction (MP) Violin Plot (VP) Question-mark (QM)

Model prediction Actual value

Fig. 1. Our experiment used five visual representations that could be grouped into three categories: (a) Table and Histogram, which do not have
model prediction values, (b) Model-prediction, which consists solely of model prediction values, (c) Violin Plot and Question-mark, which include
both model prediction values and uncertainty. Two instances of predictions displaying varying levels of model uncertainty are displayed across the
rows. The actual values are only presented in the model performance demonstration stage, not in the prediction task.

consensus is that without appropriate interventions, people
are heavily biased to adopt imperfect human judgments
over imperfect models [12], [14]. The question of which
interventions work to mitigate this bias, such that people
make the appropriate choices, returns to the importance of
trust calibration and aligning AI/ML capabilities to people’s
understanding and use of those capabilities. Dietvorst et
al. [13] showed that people will use imperfect models if
they have the ability to modify the model’s outputs. In those
studies [12], [13], [14], the AI/ML models were regarded as
fully automated decision aids, and participants had only to
make a single decision — accept model predictions for all
cases (fully automated) or discard model predictions but use
their own predictions instead for all case (fully manual). The
single decision measures overall reliance on fully automated
models. However, with modern visual analytics systems,
people are able to make dynamic decisions depending on
the performance of individual predictions with varying
levels of uncertainty, and the difficulty of tasks, which have
not been quantified in previous studies.

In this paper, our major aim is to explore different
uncertainty visualization techniques as a possible interven-
tion for aligning human decisions with a model’s actual
capabilities. In essence, if a model has uncertainty about
a prediction, does an uncertainty visualization unilaterally
prompt human aversion, or, are there uncertainty visualiza-
tions that would encourage human adoption of the model’s
outputs? Theoretical groundwork for this question has been
established in uncertainty visualization for statistical mod-
els [15], [16], [17], uncertainty-aware black-box systems [7],
and algorithm aversion [12], [14]. However, these works
are disparate and do not specifically establish an associa-
tion between visual representations of uncertainty and the
adoption of model outputs in the presence of high or low
uncertainty. Here, we note that our study focuses only on

the impact of uncertainty representation on model adoption.
For the model chosen in our experiments, low uncertainty
typically indicates that the model is reliable. However, this
is not necessarily true for all models, and future work
addressing specific decision contexts is needed to confirm
if such representations can result in inappropriate reliance,
which is considered a useful, albeit indirect, measure of
miscalibrated trust [18].

Our study examines two designs for uncertainty visu-
alization in comparison with a baseline case in which only
the model prediction is present. To test these designs, we
devised a forecasting task for study participants in Ama-
zon Mechanical Turk (MTurk). The test bed resembles the
regression prediction task used in Dietvorst et al. [12], in
which participants were tasked to predict an applicant’s
chance for admission into a graduate school program with
or without observing model performance by presenting the
model prediction result in plain text. In our study, we build
upon Dietvorst et al.’s work [12] and explore the impacts of
visualization on model reliance in a Multiple Linear Regres-
sion model. Here, the regression model acted as an AI/ML
agent. We chose this test bed because of the relative trans-
parency and simplicity of quantifying uncertainty in linear
regression. Additionally, the available data set allowed us
to control for what we refer to as model uncertainty, which
we closely associate with task difficulty. In this experiment,
we employed static visualization exclusively, in order to re-
duce potential confounds (e.g., animation in a hypothetical
outcome plot), as our first step in investigating the impact
of uncertainty visualization on model reliance. We consid-
ered two forms of representations to convey model un-
certainty, ordinal vs. distributional, and adopted Question-
mark glyph and Violin Plot (shown in Figure 1) as their
representatives, respectively. We chose these two straight-
forward representations to prevent participants from being
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overwhelmed with excessive information when performing
regression tasks with given data attributes. In the results
from our experiment:

1) We show that when a decision task has low model
uncertainty, people tend to adopt model predictions
and tend to use model information when predictions
include uncertainty visualization; however, when a de-
cision task has higher model uncertainty, the uncer-
tainty visualization has no significant effect on model
adoption (Section 5.1 Q1).

2) We compare two designs of uncertainty visualization
namely, the Violin Plot and a Question-mark glyph, and
show which visualization between the two better aligns
human decisions and behaviors with the model’s un-
certainty level, with better alignment suggesting better
trust calibration (Section 5.1 Q2).

3) Finally, we show which uncertainty visualization de-
sign results in more positive perceptions of model trust-
worthiness, confidence, security, and reliability which
are proxy measures of the decision maker’s trust (Sec-
tion 5.1 Q3).

2 RELATED WORK

Based on previous work addressing trust in automa-
tion, reliance behaviors with decision support systems,
uncertainty-aware AI/ML models, and data visualization,
this study explores the human decision dynamics of fore-
casting tasks when supported by visualizations of model
uncertainty.

2.1 Trust Calibration and Model Reliance

Trust in decision support systems has received much atten-
tion, particularly with recent developments in ML-enabled
systems that are more difficult to manually inspect. A large
body of literature has argued that it is critical for people to
calibrate their trust to a machine’s actual capabilities, if the
appropriate human behaviors while using these machines
are to be achieved and sustained, for better overall perfor-
mance from the human-machine system [4], [5], [19]. Due to
the difficulty of directly measuring trust, which is a social-
psychological construct, many researchers resort to using
behavioral measures, such as reliance, as a proxy for trust,
even though trust can only partly predict reliance. However,
such behavioral measures are often the primary outcomes
of interest when it comes to the study of trust. During
the decision-making process in a human-AI/ML teaming
environment, without appropriate trust calibration, humans
can either overly rely on predictions made by AI/ML
models (known as automation bias [20]) or disregard pre-
dictions made by AI/ML models (known as algorithm
aversion [12]). Automation bias and algorithm aversion are
two opposite tendencies where people fail to align their
trust with a model’s actual capabilities. Automation bias
has been defined as the tendency to follow the automated
model suggestion “as a heuristic replacement for vigilant
information seeking and processing” [21]. It has been well-
studied in a variety of domains such as aviation [22], [23],
health care [24], [25], [26], and process control [27], [28], [29].
These studies found that automation bias can occur even

when the automated model provided wrong advice. This
phenomenon has been verified by various human-computer
interaction (HCI) studies that show people may over-rely on
automated models and follow their incorrect suggestions,
even when they would make a better decision on their
own [30], [31], [32]. Logg et al. [33] further investigated
automation bias, and found that lay people are more prone
to rely on algorithmic suggestions while experts are more
likely to be affected by algorithm aversion.

Previous studies reveal potential reasons why people
have algorithm aversion, namely they prefer human pre-
dictions over model predictions [34], [35]. First, algorithmic
models are inherently distrusted in many application sce-
narios [36], [37], [38]. However, in these scenarios, if people
would adopt model predictions appropriately, the overall
human-AI/ML collaborative performance could improve,
especially for predictions with low model prediction uncer-
tainty. In algorithm aversion studies conducted by Dietvorst
et al. [12], people discarded model predictions if errors
were observed. Even when informed that human forecasters
performed worse than the model, people were still inclined
to select the human forecaster. If people were provided
with the opportunities to adjust predictions made by the
model, then model adoption rate increases significantly [13].
The increase indicates that modifying a model’s predictions
can increase human trust and model adoption; yet, overall
performance was worse after human adjustments.

It is notable that these initial studies applied models
as black-boxes and evaluated peoples’ reliance on models
by displaying model predictions with ground truth. Later,
Yang et al. [39] provided visual explanation of a classifier
to support appropriate trust through model transparency.
In this paper, our goal is to test the effects of visualizing
uncertainty on model usage, with model usage representing
reliance and a proxy measure of trust the model.

2.2 Uncertainty Awareness in AI/ML Models

Showing uncertainty information can aid in understanding
the causes of potential errors, variations, and biases [16],
[40], [41] in the data, model outputs, and visual mapping.
For instance, AI systems with uncertainty-aware designs
can inform decision-makers about the known unknowns [7],
which helps decision-makers adopt different strategies as
needed. There are two types of uncertainty, aleatoric un-
certainty and epistemic uncertainty [10], [42]. Aleatoric un-
certainty indicates the inherent randomness of a system or a
model, such as a flip of a coin. Epistemic uncertainty denotes
uncertainty caused by a lack of knowledge, which can be
mitigated by observing additional data. In this paper, we
are referring to epistemic uncertainty which is possible to
mitigate through visualization.

Visualizing uncertainty can be used to calibrate trust to a
model’s actual capabilities and enhance appropriate model
reliance, and some studies have been conducted to eval-
uate the impact of uncertainty on reliance decisions. One
study conducted by Cai and Lin [9] showed that presenting
confidence levels of a system improved trust calibration in
dynamic scenarios (e.g., autonomous driving). Furthermore,
a study conducted by Conway et al. [43] discovered that
the actual capability of a decision aid was inadequately
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perceived if multiple cues with uncertainty were given.
In our study, we use visual representations to show the
uncertainty of a regression model to confirm associations
between model use and uncertainty visualization.

2.3 Uncertainty Visualization

Visualizations may have significant differences in their
ability to communicate uncertainty across different tasks,
with controlled experiments showing that even researchers
cannot interpret confidence intervals correctly for statistical
inference [44], [45]. However, more recent work has begun
to explore the effectiveness of various uncertainty visual-
izations on a per task bases. Distributional visualization
with frequency information (e.g., quantile dot plots and
hypothetical outcome plots) have been found more effective
for communicating uncertainty [46], [47], [48], in particular,
work by Padilla et al. [49] found that humans can better
reason with direct and indirect uncertainty when presented
as quantile dot plots. Several studies on bar charts revealed
that bar charts with error bars were not efficient for in-
ferring statistical information including sample means [50]
and error distributions [51], while color density encoded
horizontal bars were found to be effective in expressing
temporal uncertainty [52], [53]. The dynamic variance of
data distribution (data uncertainty) in progressive visual-
ization was evaluated by Procopio et al. [54]. Kale et al. [55]
investigated the interpretation of effect size using eight
types of uncertainty visualizations. They found that the
variance of distributions is a critical factor in their experi-
ment to impact decision making. Guo et al. [56] introduced
an alternative-aware uncertainty visualization to enhance
humans’ confidence in selecting between two options, in
which they discovered that the level of uncertainty plays
a critical role. Although these works applied different ap-
proaches to obtain the amount of uncertainty, it is evident
that enhancing uncertainty awareness by visualizations is
critical. Thus, in our experiment, we also considered the
level of uncertainty to inform the selection of samples in
our prediction task (details in Section 4.2)

Our study adopted a Question-mark representation
(QM) and a Violin Plot (VP) to show the uncertainty of
a model prediction. Compared to frequency-based formats
(e.g., quantile dot plots, HOP), the QM ordinal representa-
tion – a discretized presentation – was simplified for laypeo-
ple using the number of golden question marks to inform
rough uncertainty levels without precise numbers regarding
the upper and lower bounds of uncertainty. Furthermore,
using the number of golden markers to indicate a rating
score is widely adopted in popular websites and mobile
apps. These two uncertainty representations were selected
due to their different complexity in expressing uncertainty:
continuous probability density distribution vs. an ordinal
value. We evaluated these uncertainty representations’ (QM
and VP) impact on model usage (adoption or rejection of
the ML model prediction) compared with observing solely
the model prediction (MP). We considered not only un-
certainty representations but also the experimental factors
and procedure, task complexity, and completion time as a
whole. We prefer a within-subjects experimental design to
maximize the signal-to-noise ratios because each participant

serves as their own control. Therefore, we only adopted two
uncertainty visualizations in our experiments to ensure the
experiment could be completed within a reasonable time
and avoid fatigue among participants.

3 TESTBED AND MTURK PLATFORM

The current study investigated how different visualizations
of uncertainty information, including no visualization of
uncertainty, impacted adoption behavior of model predic-
tions among a general population. Participants were asked
to inspect visualizations that provided varying levels of
detail about a data set and a model’s predictions based on
that same data set. Participants then chose whether or not
to adopt the model’s prediction. The study was conducted
with Amazon Mechanical Turk (MTurk) participants who
were instructed to examine the information presented for
each task and decide whether to use the model’s predic-
tion or to provide their own prediction. Therefore, model
adoption in this study served as a proxy for reliance. In this
section, we describe in detail the data set, the prediction
model, and the prediction task.

3.1 Dataset
The testbed was designed based on a publicly available data
set of graduate student admissions.1 The data set consists
of five hundred unique applicants with seven independent
predictors for admission including cumulative GPA, GRE
score, TOEFL score, university rating, statement of purpose,
letter of recommendation, and research experience. To sim-
plify the prediction task for our general participants, we
pre-processed the data by transforming the target outcome
variable (likelihood of admission) and performing step-
wise regression. For the target variable, the original values
(likelihood of admission) were converted into percentiles
to eliminate any contextual information (i.e., the range of
likelihood of admission). In this case, the percentile score
for a given applicant was equivalent to the percentage of
applicants whose likelihood of admission was restrictively
lower. For example, an applicant with a percentile score of
50 means that 50% of the applicant pool had a lower chance
of admission than the applicant.

3.2 AI/ML Agent
Multiple linear regression models are among the simplest
AI/ML tools for supervised learning where a set of predic-
tors and a target variable make up the input-output space.
Using a full set of the graduate admissions data (N = 498,
excluding two applicants whose percentile scores equal
zero), we performed ordinary least squares estimation and
stepwise regression (JMPr version 15) on the original pre-
dictors, with the percentiles as the target variable. Stepwise
regression is a step-by-step iterative process of choosing
the best predictors out of a large set of predictors. The
forecasting tasks for participants were deliberately selected
according to the level of uncertainty (more details in Sec-
tion 4.2). The final regression model that served as the
AI/ML agent for the experiments included five predictors

1. https://www.kaggle.com/mohansacharya/graduate-admissions
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TABLE 1
An example of a graduate school applicant with the 5 variables used in

the prediction task.

Variable Value

GRE Score [290 - 340] 305

TOEFL Score [0 - 120] 112

Letter of Recommendation [0 - 5] 3.5

Cumulative Grade Points [0 - 10] 8.65

Research No

(Table 1) and one active interaction effect between TOEFL
score and research experience (R2 = 0.837, R2

adj = 0.837,
RMSE = 11.66). To reduce task complexity, only the active
predictors were shown to participants. Often, an active
predictor has two characteristics: (1) the prediction perfor-
mance of a single predictor exceeds a given threshold, and;
(2) not highly correlated with other active predictors. Aux-
iliary model information, such as performance indicators
and regression coefficients, were not disclosed. This task has
been crafted to resemble tasks in other studies on algorithm
aversion (i.e., [12]), in which participants were asked to
predict admissions for MBA applicants. We extended these
prior studies by adding visualizations, including distribu-
tions of variables, model prediction values and uncertainty.

3.3 MTurk Platform
Participants were instructed to assume the role of a grad-
uate school admissions officer, whose main task was to
predict the percentile score of an applicant. To motivate
performance, participants were informed that lower error
rates would lead to higher bonuses, which were calculated
based on the average absolute error (AAE) in Equation 1 (k
denotes the number of cases evaluated). AAE is easier for
participants as it is a linear calculation. Participants only
observe AAE information both for their own predictions
and the model’s predictions. The mapping between AAEs
and bonuses is shown in Table 2.

AAE =
1

k

k∑
i=1

|ypredicted(i) − yactual(i)| (1)

The bonus structure was such that participants received
a one dollar bonus if, on average, their final predictions (a
selection of either a model prediction value or their own
prediction value) deviated from the actual value within 5
percentile points. For every additional 5 percentile devia-
tion, the bonus decreased by 20 cents. If the participant’s
AAE was larger than 25 percentile points, there was no
bonus. Similar incentive structures were used in previous
work on algorithmic aversion [12].

4 METHODS

The goal of the MTurk experiments is to test the effects
of different uncertainty visualizations on the adoption or
rejection of model outputs by general participants. We con-
ducted two independent experiments (Figure 2) with the
same test bed, conditions, and protocols but with different
participant groups and tasks. The task in this study was

TABLE 2
Mapping of AAE to bonuses.

AAE 5 10 15 20 25

Bonus $ 1.00 $ 0.80 $ 0.60 $ 0.40 $ 0.20

a forecasting instance (i.e., one set of predictors for one
applicant) presented to participants for their prediction of
the applicant’s acceptance percentile. For brevity, we will
refer to participants from the first study as the study group
and participants from the second study as the confirmatory
group. The second, confirmatory study, serves to corroborate
results from the first study to test whether the results are
consistent across participant groups and tasks. The concept
of confirmatory validation runs has been applied in design
of experiments [57] and response surface methodology [58]
to check if certain singles found in a prior experiment can
be generalized to a reasonable range of conditions in follow-
up experiments. We only report results that are statistically
significant for both groups in Section 5. In this section,
we describe our research questions and associated metrics
(also known as response or target variables); experimental
factors, conditions, and design (Section 4.2); participant re-
cruitment and demographics (Section 4.3); the experimental
protocol (Section 4.4); and finally, the method for statistical
analysis (Section 4.5).

4.1 Research Questions

Q1. Does uncertainty visualization help to align appropriate
human decisions in a forecasting task, given a certain level
of model uncertainty i.e., low and high uncertainty? For
low uncertainty tasks, regression models are expected
to perform better than a human forecaster, so the op-
timal decision should be to adopt model predictions.
Conversely, the appropriate behavior would be to reject
model predictions under high model uncertainty. Thus,
the response variable is whether a participant, in a
specific task, adopted the model prediction or opted for
their own prediction. Additionally, participants who
opted for their own prediction were asked “Did you
use model information or not?”, another dichotomous
measure. Here, we note that uncertainty does not al-
ways indicate a model is performing well; however,
for this experimental setup, low uncertainty is aligned
with good performance.

Q2. Which of the two uncertainty visualizations explored in this
study (Violin Plot or Question-mark glyph) supports better
decisions given the level of model uncertainty (i.e., supports
trust calibration better)? The response variables are the
same as Q1.

Q3. Which of the two uncertainty visualizations explored in
this study (Violin Plot or Question-mark glyph) has higher
perceived trustworthiness, reliability, and confidence in pre-
dictions? At the end of the experiment, participants
were administered a 37-item post-task questionnaire
to measure perceptions of the model and visualization
tools. The majority of questionnaire items solicited
Likert-type responses. For each task, in addition to
the same behavioral measures collected in Q1 and Q2,
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Tutorial Video

• Experiment procedure
• Main task demo
• Bonus structure 

Quiz

Pass

Fail

Stop

Main Task

Show model’s performance
with 10 cases

• Violin Plot (5) and 
  Question-mark (5) 
• Actual value
• Table 

Within-subjects

The prediction task
(six randomized cases per vis)

Table
(Fig. 2)

Histogram
(Fig. 2)

Model-prediction
(Fig. 2)

Violin Plot
(Fig. 2)

Question-mark
(Fig. 2)

Questionnaire

• Prediction task related
  questions
• Trust survey
• Risk propensity survey
• Demographic survey 

First Four vis randomized

Fig. 2. Experimental procedure of the study. Participants completed the same forecasting task for six applicants across five representations (within-
subjects quasi-split plot design). For the prediction task, the raw data Table was presented first, and the order of the Histogram, Model-prediction
(MP), Violin Plot (VP), and Question-mark (QM) representations were randomized.

participants were also asked to elaborate their reason
for adopting or rejecting model predictions in a free-
response field.

Auxiliary information, such as the AAE (Equation 1),
task time, and demographic details, were also analyzed.

4.2 Experimental Design

Five visual representations of the data (Figure 1) were
implemented in this study, including: two representations
of the raw data (Table, Histogram), a representation of
the model prediction value only (Model-prediction), and
two representations of uncertainty (Violin Plot, Question-
mark glyph) along with the model prediction. The Table
representation replicates Dietvorst et al.’s experiments [12],
[13], which uses a table to list the variables and their values
in text for a prediction task. The Histogram representation
uses visual aids to further convey the percentile information
of each variable. We used the Table and Histogram as
comparative representations to benchmark the effects of
other representations with model prediction, uncertainty
information, or both. In addition, we also used Table and
Histogram as an attention check to confirm that participants
were engaged in the task since these two representations
do not include model predictions. That is, if AAE under
Table and Histogram conditions were significantly higher
than the three other representations that contained model
predictions, we would conclude that a participant was likely
making uninformed or random guess decisions.

The amount of uncertainty accompanying a prediction
from linear regression models is referred to as the prediction
variance. It is a function of the uncertainty in parameter esti-
mates, also known as epistemic uncertainty – the conditional
variance around an observation (given the specific settings
of the predictors). The model’s measure of uncertainty may
contain epistemic or systematic uncertainty, as there are
input variables that could affect the response that were
not included in the model. In this case, the model fit and
diagnostics indicate the lack of epistemic uncertainty. Thus,
to determine what forecasting tasks would comprise the
high and low levels of model uncertainty, we considered
two criteria: (1) the prediction variance of an individual
observation [59]; (2) the set deletion statistics, DFFITS and
DFBETA, of an individual observation, which points to the
“rarity” of a specific data point in relation to the subspace
of predictors (x) and actual observations y [60]. While set

deletion statistics such as DFFITS and DFBETA are tradi-
tionally used to measure the influence of an observation
in regression models, we used both as guidelines to detect
edge cases. Thus, data points which had high prediction
variances and DFFITS and DFBETA statistics relative to the
rest of the data comprised the “high model uncertainty” cat-
egory. These are data points which are unusual in both the x
and y values; intuitively, both the model and human agents
would find these cases difficult to predict. This distinction
between high and low levels of model uncertainty is the
basis for designing two types of Violin Plots and Question-
mark glyphs, one that reflects high model uncertainty (dif-
ficult cases) and one that reflects low model uncertainty
(theoretically easy cases for the model and participants).

10 experimental conditions (5 levels of representation ×
2 levels of model uncertainty) were tested in the study. We
selected 3 prediction instances for each level of model un-
certainty, with each prediction instance presented through
the 5 representations. As we opted for a within-subjects
experimental design, every participant had to predict 6
unique instances (3 high, 3 low) across all 5 representations,
resulting in 30 prediction cases in total. Participants were
not informed that they were making predictions for the
same cases, differing only in the representation or visual-
ization method. To alleviate the threat of maturation and
test-retest bias, we first randomized the order of 5 represen-
tations, with the exception of the Table always presented
first and served as the baseline condition. Then, within
each representation, we further randomized the order of
prediction instances. Participants were not informed of the
ground truth after each prediction.

The experimental design follows a factorial structure
(each factor level completely crossed with levels of the
other) with restricted randomization (where representations
were randomized within a case, but not across cases) and re-
peated measures. We opted for this study design for several
reasons. First, the uniformity of cases across representations
deterred possible noise resulting from task-to-task differ-
ences. Thus, if there were differences in responses among
experimental conditions, they would most likely be due to
the factors of interest. Second, a within-subjects (repeated
measures) design was used for a similar reason i.e., indi-
vidual differences among participants would most likely
add variation that we were not interested in estimating.
Finally, we only used 6 unique applicants because of con-
cerns about experimental task fatigue among participants.
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TABLE 3
Detailed information about participants in the study group and the confirmatory group, including number of participants, study completion time,
age, gender, and educational background. For completion time and age, the min, max, and median values are highlighted in the Histograms.

Group N Completion Time (minutes) Age Gender Education

Study
Group

50

Conf.
Group

27

Our experiment setup was that each participant was tasked
to complete 30 predictions, which could be accomplished
within a reasonable duration.

To identify the consistency across two samples, we used
the same approach for the confirmatory experiment, with
two key differences: a different set of prediction cases and a
new group of MTurk participants. Similar criteria for estab-
lishing baselines of model uncertainty level were employed
as in the first study. Due to the change of the set of prediction
cases, the model prediction values and corresponding un-
certainty (prediction variance) intervals are different, which
may impact participants’ behavior of model adoption and
rejection. It implies that the final prediction performance
and adoption behavior may rely on the performance of
the model. Our findings only reported results consistent
between both study and confirmatory groups.

4.3 Participants
Participants recruited through MTurk were filtered based
on: (1) a HIT approval rate ≥ 98%, (2) number of approved
HITs ≥ 5000, and (3) location, i.e., US only. Participants
were required to pass a quiz following a tutorial video.
They cannot proceed with the experiment if they do not
pass the quiz. In total, 162 MTurk workers started the quiz,
while 14 workers did not complete it, and 56 workers failed.
The 34.57% failure rate is somewhat common compared to
other online experiments conducted on MTurk with higher
failure rates [61], [62]. Ninety two (92) MTurk workers
passed the quiz but only 77 workers successfully submitted
a HIT. Ultimately, 50 participants were recruited for the
study group, while 27 participants were recruited for the
confirmatory group. These sample sizes were projected as
adequate for the statistical models used for data analysis
(see Section 4.5). Participants were compensated with a base
payment of three dollars and a maximum bonus of one
dollar. More details about the participant samples in the
study and confirmatory groups are shown in Table 3.

4.4 Protocol
The experimental procedure, reviewed and approved by the
university’s Institutional Review Board (IRB), is shown in
Figure 2. Participants were firstly asked to read an informa-
tion sheet and to watch a video tutorial, which introduced
the prediction task, independent variables, prediction tar-
get, study interface, and the bonus structure. Then, brief
explanations of the interpretation of percentiles, uncertainty
ranges, and absolute error were provided. To assist the

interpretation of the amount of uncertainty, in the tutorial
video, we verbally stated that a larger prediction interval in
a Violin Plot or more golden question marks in a Question-
mark representation indicates a higher amount of uncer-
tainty. Meanwhile, high vs. low uncertainty of Violin Plots
and Question-mark representations were presented in a
matrix format similar to Figure 1. After watching the video,
a short quiz was administered to participants to ensure that
they completed task training and be able to distinguish, for
each representation, when a higher amount of uncertainty
is shown. In detail, the quiz consisted of five questions,
with the first three questions being general questions about
the prediction task, prediction target, and bonus structure,
while the last two assessed the participants’ understanding
of uncertainty information presented in the Violin Plots
and Question-mark representations respectively by aligning
high uncertainty and low uncertainty representations side-
by-side.2

The main task then proceeded in two stages (separated
by the dashed line in Figure 2), the model performance
demonstration and the prediction task. In the first stage,
participants observed the model forecasts of 10 randomly
selected applicants. For each applicant, participants were
shown different representations of an applicant’s informa-
tion (see Table 1 for an example), and the applicant’s actual
percentile score, i.e., ground truth (illustrated in Figure 1).
Showing the randomly selected cases that included the
ground truth information was designed to indirectly inform
participants of model performance. At the end of the first
stage, participants were shown the summary of model
performance, which included actual and predicted values,
absolute error for each applicant, and the model’s average
absolute error (e.g., “The average absolute error for the model
is 8.08”). In general, the model performance demonstration
stage can be regarded as another form of training. In this
stage, uncertainty information and ground truth are both
available to participants to help establish the association
between model performance and prediction uncertainty.
Moreover, participants are expected to gauge their reliance
on the model while uncertainty information is offered.

The 30 prediction cases were successively shown, with
the order of experimental conditions following the random-
ization structure discussed in Section 4.2. For conditions that
showed the model predictions (Model-prediction, Violin
Plot, Question-mark), participants were shown the model
prediction and then were asked to either adopt the model

2. Quiz questions are provided in Appendix B page 3

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3251950

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on March 11,2023 at 05:54:10 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YYYY

prediction or use their own. Participants were subsequently
asked to provide reasons to justify their decisions. In cases
where participants decided to use their own predictions,
they were asked if the model was helpful in formulating
their forecasts. Finally, after each prediction case, partic-
ipants subjectively rated their self-confidence in the final
prediction on a 7-point Likert scale.

Participants also completed several post-task question-
naires, including task-related perception survey, trust sur-
vey for three representations that had model predictions
(randomized 12 trust items proposed by Jian et al. [63]),
risk propensity survey (6 items proposed by [64]), and
demographic survey. The study concluded with a report
showing a participant’s bonus, AAE, and absolute errors
for individual cases.

4.5 Statistical Analysis

Processing and analysis of data from the experiments
were performed using the statistical computing software
SASr 9.4 and JMPr Pro 15. Due to the categorical nature
of the majority of the response variables and the presence
of restrictions on randomization and repeated measures, we
used generalized linear mixed models (GLMM), a flexible
family of models that accommodates both fixed and random
effects and non-normally distributed responses belonging
to the exponential family of distributions. The reader is re-
ferred to [59] for more information about GLMM’s. A crude
version of the GLMM formulated for task-level responses
(i.e., responses that were analyzed per prediction task, per
participant):

G(E(yij)) = β0 + β1x1ij + β2x2ij + β3x1ijx2ij + u0j (2)

where G(·) is a transformation function for the expected
value of the response y [59]; β1, β2, and β3 are the co-
efficients associated with the visual representations (x1),
uncertainty level (x2), and the interaction between the two
(x1x2); β0, depending on the model, could be a vector or
scalar of intercepts; and, u0, random intercepts, addressing
the repeated measures structure and constrained random-
ization by imposing a nesting between subjects and tasks
for the residuals. The full SASr scripts are included in the
supplementary materials.

When the response is scaled as binary (0, 1; yes, no),
the resulting model is a logistic regression model [59] with
correlated residuals. When the response is scaled as ordinal
(e.g., Likert scale), the model is simply the proportional
odds model [59] with correlated residuals. For continu-
ous, numeric responses (e.g., AAE’s), we assume Gaussian-
distributed errors, resulting in a mixed effects model.

5 RESULTS

In this section, we present results from quantitative and
qualitative (free responses) data collected from participants.
Unless otherwise stated, special cases of GLMMs described
in Section 4.5 were used in the analysis of quantitative data.
We included a summary table in Appendix A listing the
details of response variables and corresponding statistical
models and tests.

5.1 Quantitative Analysis
Average Absolute Error (AAE) The objective of including
Table and Histogram as raw data representations was to
check the reliability of final predictions and to ensure that
participants were thoroughly engaged in the task. This
metric also provides some insights on the effectiveness of
uncertainty visualization in improving prediction perfor-
mance among subjects. Type III Tests of Fixed Effects (F -
tests) showed statistical significance at α = 0.05 (p < 0.01)
in AAE’s for the interaction effect between Visual Represen-
tation and Level of Model Uncertainty, suggesting that differ-
ences in AAE’s across the representations were not constant
across the two levels of models uncertainty. This result was
consistent for both the study group (F (4, 1486) = 5.33,
p-value = 0. 0003) and confirmatory group (F (4, 796) =
3.59, p-value = 0. 004) in Appendix A Table II.

This result has several implications. First, it implies that
there are differences in AAE’s among the representation
groups and that the magnitude of these differences are de-
pendent on the level of model uncertainty. As expected, rep-
resentations with model predictions had significantly lower
AAE’s than Table and Histogram (d1 = 9.82, d2 = 9.12, p <
0.0001)3; these differences were lower in magnitude for high
uncertainty tasks (d1 = 5.00, d2 = 4.48, p < 0.0001) (Ap-
pendix A Table III), a consequence of the active interaction
effect. Secondly, it also shows that while there are significant
differences between representations with model predictions
and those without, there was no significant difference be-
tween the AAE’s of the two uncertainty visualizations and
Model Prediction Only (Table 4). Results from both study
group and confirmatory group are consistent and similar
in magnitude.

TABLE 4
Differences of average AAEs between Model Prediction Only and two

uncertainty visualizations combined (Uncertainty Viz).

Uncertainty
Level

Diff. of
Avg. AAEs

p-value

Low
Uncertainty

d1 = 1.47 p = 0.14

d2 = 1.61 p = 0.23

High
Uncertainty

d1 = 1.51 p = 0.13

d2 = −2.09 p = 0.12

di = Model prediction only − Average of Uncertainty Viz, where i = 1 is
the study group and i = 2 is confirmatory group

Q1. Trust Calibration To determine if behaviors were
aligned with the model’s level of uncertainty, we compared
the percentage of trials in which participants adopted the
model prediction values (chose “Model prediction”) with
the percentage of trials in which participants provided their
own predictions (chose “Own prediction”). Our expectation
is that for low uncertainty tasks, uncertainty visualization
would significantly drive participants to pick the model’s
prediction over their own; the reverse is hypothesized for
high uncertainty tasks. Looking at the descriptive statistics
in the graphs of Figures 3, it is evident that participants
increased adoption of model predictions in the presence
of low model uncertainty and uncertainty visualization.
For both study and confirmatory groups, the proportion

3. di: difference in average AAEs between representation groups
where i = 1 is the study group and i = 2 is confirmatory group

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3251950

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on March 11,2023 at 05:54:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: EVALUATING THE IMPACT OF UNCERTAINTY VISUALIZATION ON MODEL RELIANCE 9

MP VP QM

59%
65%

74%

41% 35% 26%

56%

69% 70%

44% 31% 30%

MP VP QM

58%
53% 52%

42% 47% 48%

38%
44%

30%

62% 56% 70%

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e 

(%
)

C
ho

ic
e

Low Uncertainty High Uncertainty

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e 

(%
)

C
ho

ic
e

Choose Own Choose Model Study Group Confirmatory Group

Fig. 3. The percentages of trials in which participants adopted the model prediction values for different levels of model uncertainty, with low
uncertainty tasks on the left and high uncertainty tasks on the right. The study group is marked by purple borders, while the confirmatory group is
marked by green borders. The colors correspond to different visual representations.

QM/VP vs. MP (Low) 1.56 [1.11, 2.20]

QM vs. VP (Low) 1.56 [1.03, 2.35]

QM vs. VP (High) 

0 1 2 3 4

1.85 [1.17, 2.92]

0.53 [0.31, 0.90]

Study Group Confirmatory Group

Fig. 4. 95% CI interval plots of OR between two representations for a
specific uncertainty level (annotated inside parentheses). The threshold
at OR equals 1.0 is highlighted.

of times participants selected model predictions was seem-
ingly higher with uncertainty visualization compared to
when only the model prediction was present. For high
uncertainty tasks, appropriate reliance was observed for the
study group, as participants gravitated towards their own
predictions in the presence of either uncertainty visualiza-
tion. But, for the confirmatory group, only the Question-
mark representation increased rejection of model outputs.

Whether these signals are legitimate (and not just due
to noise) remains a question. Hence, we conducted formal
statistical tests by fitting a logistic regression model with
correlated errors. Type III Tests of Fixed Effects yielded sim-
ilar results as in analysis of AAE, where the interaction effect
between Visual Representation and Level of Model Uncertainty
has a significant impact (study group: F (2, 596) = 5.20,
p-value = 0. 006; confirmation group: F (2, 320) = 3.59,
p-value = 0. 029; shown in Appendix A Table IV). This
provides some evidence that there are different adop-
tion/rejection behaviors across visual representations, de-
pending on whether the task is easy (low uncertainty) or
difficult (high uncertainty).

Subsequently, Odds Ratios (OR)4 were estimated and
tested (H0 : OR = 1 vs.H1 : OR > 1) to provide insights on
the order of magnitude of effects from uncertainty visualiza-
tion and level of uncertainty. Figure 4 shows the estimated
odd ratios and corresponding 95% confidence intervals. For
low uncertainty tasks, an odds ratio significantly greater
than 1.0 implies increased model adoption when uncer-

4. Here, the odds ratio is defined as the odds of Model Prediction Only vs.
the odds of Model Prediction with Uncertainty Visualization (averaged).
The odds is defined as the chance of choosing the model prediction vs.
formulating their (participants) own.

tainty visualization is present, while for high uncertainty
tasks, an odds ratio less than 1.0 implies increased model
rejection with uncertainty visualization.

Figure 4 confirms that for low uncertainty tasks, un-
certainty visualization generally promotes the adoption
of model predictions i.e., the chance of choosing model
predictions over one’s own is 1.56 (study group) or 1.85
(confirmatory) times more with uncertainty visualization
than without. Both odds ratios are statistically different
from 1.0. This result implies that anywhere from 60 − 65%
of users will adopt model predictions in the presence of
uncertainty visualization when the model is more certain
about a prediction, compared to only 35−40% in its absence.

In the case of high model uncertainty, the estimated
odds ratios were not significantly different from 1.0 for both
groups of participants. A straightforward interpretation of
this result is that uncertainty visualization has potentially
no impact for difficult cases. However, the differences in
proportions between Model-prediction and Question-mark
glyph in Figure 3 suggest that there may be potential for
the right type of uncertainty visualization to deter model
adoption behavior when the model is less certain.

The aggregated pattern of model adoption behaviors
is analyzed using OR. We further investigated individual
participants’ behavior over time. To do so, we applied the
Bernoulli cumulative sum (CUSUM) chart [65], which is
a type of control chart designed for binary variables (e.g.,
model adoption = 1; model rejection = 0). Control charts
with upper and lower control limits are often used to
monitor the occurrence of a particular event, and data points
out of control limits indicate systematic changes from the
baseline rate to an alternative rate that exceeded control
limits. In our case, we aim to detect if systematic changes
(i.e., significant increased or decreased model adoption)
exist in 18 trials of the prediction task. Table and Histogram
conditions do not include model predictions, so these two
conditions are excluded from the temporal analysis. Refer-
ring to the OR and control limits setting applied in [66],
we used the average percentage of model adoption of all
participants as the baseline rate (i.e., 56%), increasing or
decreasing the chance of model adoption by 15%-25% as
the upper and lower limit respectively (i.e., OR+=2, OR-
=0.5). After generating Bernoulli CUSUM charts of each
participant, we acquired three categories of participants :

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3251950

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on March 11,2023 at 05:54:10 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH YYYY

MP vs. VP 2.20 [1.10, 4.50]
2.60 [1.00, 6.90]

VP vs. QM 2.20 [1.10, 4.60]

VP vs. MP 4.00 [1.90, 8.10]

VP vs. MP 2.20 [1.10, 4.50]

VP vs. MP 2.40 [1.20, 4.70]

VP vs. MP

VP vs. QM

4.20 [2.00, 8.60]

2.40 [1.20, 5.00]

0 2 4 6 8 10 12 14 16

VP vs. MP

VP vs. QM

2.80 [1.40, 5.70]

2.20 [1.10, 4.50]

3.70 [1.40, 9.80]

5.30 [1.90, 14.5]

3.10 [1.10, 8.30]

3.10 [1.20, 8.10]

3.40 [1.30, 8.90]

4.10 [1.50, 11.2]

3.00 [1.10, 8.00]

2.60 [1.00, 7.00]
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Fig. 5. A sample of subjective ratings of trust survey items (based on
the scales of trust developed by Jian et al. [63]) from participants in both
study group and confirmatory group. The trust survey items have signif-
icant differences consistent in both groups are included exclusively. The
95% CI interval plots show the odds ratios between two representations.

(1) do not have distinct temporal patterns over time (70 out
of 77 participants), (2) have distinct temporal patterns over
time (one out of 77 participants), (3) chose to adopt model
prediction results for all 18 trials (six out of 77 participants).
Based on the results, we can conclude that most participants
had no obvious temporal dependencies, such as increasing
the adoption of the model over time. The participant who
exceeded the lower control limit adopted model prediction
twice. To avoid lacking degrees of freedom in analyzing
other ordinal variables, we decided to keep all data.
Q2. Uncertainty Viz Designs and Trust Calibration Now
that it has been established that uncertainty visualization
has the potential to calibrate trust as measured by reliance
behaviors depending on model uncertainty, we compare
the two uncertainty viz designs tested in the study. The
Question-mark representation shows more propensity to
affect reliance behaviors, an observation evident in Figure 4
where for the study group with low uncertainty tasks, the
chance of adopting model outputs is 1.56 times more than
the Violin Plot. However, this finding was not corroborated
in the confirmatory group, in which the odds ratio was not
significant at α = 0.05. However, for high uncertainty tasks,
the confirmatory group posted increased rejection of model
outputs for the QM representation (OR = 1/0.53 ≈ 2.0),
which was not observed in the study group. Though tests of
significance of odds ratios yielded inconsistent results across
the two study groups, directions of estimates are congruous
– QM consistently outperformed VP in terms of calibrating
trust and affecting reliance behaviors.
Q3. Perceptions In addition to reliance behaviors, mea-
sures of perception toward the visual representations were
collected through a post-task questionnaire. Unless other-
wise mentioned, survey responses were on a 7-point Likert
scale, with higher values being more desirable in this case.
Due to the ordinal scale of the response data, we used a

proportional odds model with Task as a random effect in the
analysis of survey responses.
Trust After completing the forecasting tasks, participants
were asked to provide their ratings on the 12-item trust
questionnaire from Jian et al. [63]. To eliminate maturation
and fatigue biases, the questionnaire items were presented
to participants in a randomized fashion [67]. Every visual
representation with model prediction (MP, VP, QM) was
evaluated. Similar to Q1 and Q2, odds ratios were estimated
and tested to compare the relative impact of uncertainty
visualization on trust perceptions. Figure 5 lists the ques-
tionnaire items that had ORs5 which were statistically dif-
ferent from 1.0. Among the 7 positively worded items in
the survey, only the statement “I am familiar with the model
(a regression model)” did not post any differences. Among
the negatively worded trust items, only (“I am wary of the
model”) posted a significant difference, favoring uncertainty
visualization VP over MP.

Interestingly, the Violin Plot was consistently perceived
as more superior with respect to the trust questionnaire
items. In comparison to the frequency based representation,
VP seemed to inspire more confidence and trust in the
model, as well as perceptions of increased security, integrity,
dependability, and reliability by at least a factor of 2 for both
the study group and confirmatory group.
Difficulty and Confidence in Prediction Participants
also rated the overall level of difficulty6 of the forecasting
task when using a specific representation. Both the study
group and confirmatory group revealed that the uncer-
tainty visualizations VP, QM were easier for prediction
tasks than MP by at least a factor of 2 (study group:
OR = 3.57 [1.74, 7.32], p-value = 0. 0005; confirmation
group: OR = 2.88 [1.10, 7.54], p-value = 0. 0309; shown
in Appendix A Table V). However, participants did not
perceive any differences in difficulty between VP and QM.

Additionally, confidence ratings on a 7-point Likert scale
(the higher, the better) were also collected to gain insights
about participants’ level of confidence in their predictions
when a specific representation was present. Results show a
similar pattern where VP and QM raised perceptions of con-
fidence in predictions over MP by a factor of at least 3 (study
group: OR = 3.29 [1.64, 6.58], p-value = 0. 0008; confir-
mation group: OR = 3.07 [1.19, 7.94], p-value = 0. 0201;
shown in Appendix A Table VI). Similarly, there were no
difference in perceptions between VP and QM.

5.2 Qualitative Feedback
Participants from both study and confirmatory groups elab-
orated their reasons for selecting or rejecting model predic-
tions at the end of each task. We combined, categorized, and
analyzed the responses according to two groups, (1) reasons
for choosing model predictions (Table 5) and (2) reasons
for choosing their own predictions (Table 6). We looked at
the top 3 reasons (based on the cumulative frequency of
responses being 70−80%) and performed separate statistical

5. Here, OR is defined as the ratio of the odds of being in a higher
category (e.g., 5, 6, 7) over a lower category (e.g., 1, 2, 3) between two
representations. For positively worded questions, OR > 1 suggests
that the first representation is more desirable. For negatively worded
questions, OR > 1 suggests that the second is desirable.

6. Measured on a 5-point Likert scale (1=Very Difficult, 5=Very Easy)
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TABLE 5
The categories of reasons for choosing model predictions (adoption).

Reason Pct.(%) Accum.
1 I agree with the model prediction./The

model prediction seems reasonable to
me.

50.32 50.32

2 I trust the model./The model is reli-
able.

14.90 65.22

3 Due to the low uncertainty. 12.23 77.45

My prediction is close to the model
prediction and the model prediction is
more accurate.

7.77 85.22

I am not confident/certain about my
prediction.

4.71 89.94

Due to the high uncertainty. 1.27 91.21
Others 8.03 99.24
Invalid 0.76 100.00

VP QM
0

20

40

60

80

Adoption-Reason#1

C
ou

nt

VP QM
0

20

40

60

80

Adoption-Reason#3

VP QM
0

20

40

60

80

Rejection-Reason#2

Low Uncertainty High Uncertainty

Fig. 6. Significant results of a homogeneity test between Uncertainty
Level and Uncertainty Visualization Type for top three reasons of both
adoption and rejection behavior (listed in Table 5 and 6 respectively). For
adoption reason #1 (left), there is an active interaction effect between
Uncertainty Level and Uncertainty Viz Type. For adoption reason #3
(middle), participants used “low uncertainty” to justify their adoption
behavior more frequently for QM than for VP. For rejection reason #2
(right), participants used “high uncertainty” to justify their adoption be-
havior more frequently for QM than for VP.

analyses on the top 3 for each behavior category (adoption,
rejection). The goal of the analysis is to investigate differ-
ences in the observed frequencies of a top 3 cited reason
across the uncertainty visualization types (QM, VP) and
uncertainty levels (low, high).

First, we performed a test of homogeneity (a.k.a, 2×2 χ2

test of independence) between Uncertainty Level and Un-
certainty Viz Type. This was done for each top 3 reason and
behavior type (adoption, rejection), resulting in 6 separate
and independent tests. Out of the 6, only the first cited rea-
son for adoption (“I agree with the model prediction./The
model prediction seems reasonable for me”) turned out
to be significant at the 5% level (χ2 = 3.95, p < 0.05;
shown in Appendix A Table VII). This result implies that
Uncertainty Level and Uncertainty Viz Type are involved
in an active interaction effect, further suggesting that differ-
ences in frequency between the two uncertainty viz types
are dependent on the Uncertainty Level. Unfortunately, we
did not have enough degrees of freedom (i.e., samples)
to explore the magnitude of this interaction effect using

TABLE 6
The categories of reasons for choosing own predictions (rejection).

Reason Pct.(%) Accum.
1 I think that the model prediction value

is not good enough/not realistic.
63.42 63.42

2 Due to the high uncertainty. 12.75 76.17
3 I partially agree with the model predic-

tion or uncertainty value, but I want to
use my own prediction.

7.38 83.56

I am more confident about my own
prediction.

4.36 87.92

My prediction is close to the model
prediction, but I trust myself.

0.67 88.59

Others 11.41 100.00

GLMM’s. Further examination of the raw data, however,
shows that for high uncertainty tasks, participants tended
to cite that model predictions are reasonable with a higher
frequency for VP than for QM. For tasks with low model
uncertainty, the opposite is true – participants tended to
cite this reason less for QM than for VP (see Figure 6 left).
This presents some evidence that QM calibrates trust better
than VP due to the reason stated i.e., if the model is more
uncertain, QM facilitated this understanding more than VP
by having a lower number of participants citing that the
model prediction is reasonable.

For the other reasons cited, we performed GLMM with
Uncertainty Level and Uncertainty Viz Type (no interaction
effect due to lack of degrees of freedom to fit interaction
effects). Because our response is count data (frequency), we
used the Poisson distribution with a natural logarithmic
transform on the mean, resulting in the Poisson regression
model. Of the 5 reasons remaining, only the third reason
for adoption (“Due to the low uncertainty”) and second
reason for rejection (“Due to the high uncertainty”) resulted
in statistically significant effects (Appendix A Table VIII and
Table IX). What we found by investigating the raw data is
that for high uncertainty tasks, there were approximately
the same number of participants who cited Reason #3
for adoption. For low uncertainty tasks, however, more
participants cited this reason for QM than for VP. The same
trend is observed for Reason #2 for rejection.

What these results tell us is that QM seems to be better
than VP at calibrating trust with a model’s uncertainty
level. Note that the cited reasons were acquired in verbatim.
Participants seem to observe, address, and take action on
a model’s uncertainty level with the Question-mark glyph
than the Violin Plot.

5.3 Summary of Key Results

• Uncertainty visualization does not improve overall pre-
diction performance (Section 5.1 AAE, Table 4).

• Uncertainty visualization encourages adoption of model
predictions for low uncertainty (easy) tasks. For high un-
certainty tasks, the results are not conclusive (Section 5.1
Q1, Figure 3).

• As an uncertainty visualization tool, the question-mark
representation shows more promise in calibrating trust
based on model uncertainty. For low uncertainty tasks,
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there is a higher chance that a person will adopt model
predictions while for high uncertainty tasks, rejection of
model outputs is more likely (Section 5.1 Q2, Figure 4).

• A violin plot is better rated as promoting trust-related
perceptions of the model in measures of “confident”,
“reliable”, and “trust”, but not in measures of “secu-
rity”, “integrity”, and “dependable” compared with the
question-mark representation on the positively-worded
items of the trust questionnaires (Section 5.1 Q3 Trust,
Figure 5).

• Uncertainty visualization, in a forecasting task, improves
ease of use of model outputs and increases confidence
in predictions. However, neither uncertainty visualization
(the violin plot or the question-mark representation) is
superior to the other (Section 5.1 Q3 Difficulty and Confi-
dence in Prediction, Appendix A Table V and Table VI).

• Based on the reasons participants cited for adopting or
rejecting model outputs, the question-mark representation
seems to align their reliance behaviors better with the
model’s level of uncertainty compared to the Violin Plot
(Section 5.2, Figure 6).

6 DISCUSSION AND LIMITATIONS

The analysis of AAE between two uncertainty visualizations
(VP and QM) shows no statistical significance, which indi-
cates we do not have enough evidence to conclude that un-
certainty visualization reliably improves overall prediction
performance. This is consistent with prior work showing
that individual human predictions tend to be inferior to
AI/ML model predictions [31], [32], [68], [69]. Although
uncertainty visualization can impact reliance on the model
(adoption or rejection of the model’s predictions), the ulti-
mate prediction results as measured by the average absolute
error are not enhanced. Likewise, Dietvorst et al. [13] dis-
covered that human adjustments of model outputs could
worsen the prediction results. The recruited MTurk par-
ticipants could be considered to be a non-expert sample
rather than domain or model experts within our particular
forecasting task. With a non-expert sample, participants may
be less sensitive to the magnitude of prediction errors.

There is a disagreement between potentially more effec-
tive uncertainty visualization for trust calibration (as mea-
sured by reliance behaviors) and perceived trustworthiness.
The QM seems to promote better trust calibration (reliance
behaviors relative to the model’s uncertainty); however, the
VP would improve people’s self-reported trust perceptions
in the model. It is interesting that QM somewhat improves
trust calibration, based upon statistical analysis on choice
(Section 5.1 Q2) and categorization on supporting reasons
(Section 5.2), but participants would prefer VP that shows a
bell curve and the prediction range. Although participants
usually consider a model to be more trustworthy when
provided with more details regarding uncertainty informa-
tion (i.e., VP), a general ordinal representation (i.e., QM)
is generally sufficient to indicate the relative amount of
uncertainty in practice. This aligns with current literature
that a simple ordinal representation could be more acces-
sible to general audiences than probability distributions
regarding uncertainty, as it can be challenging to interpret
uncertainty information correctly [70], [71]. Perceptually, it

may be demanding for the general population to build a
mental map between statistical instances and the magnitude
of uncertainty.

There are several limitations in our experimental design.
First, we constructed the experimental prediction task re-
ferring to prediction tasks utilized by Dietvorst et al. [12],
[13], which asked participants to predict the performance of
MBA students in percentiles given numerical or categorical
attributes. We believe that using only numeric and categor-
ical attributes to represent a candidate’s performance and
asking a participant to predict the relative percentile ranking
is a valid prediction task. However, it may not be identical to
a practical scenario where more detailed information about
a candidate is often provided in text documents, including
letters of recommendation and statements of purpose.

Formulation of (ecologically and contextually) valid
tasks in human-AI/ML decision support systems is, in
our opinion, an open area for research i.e., no standard
guidelines appear in the literature on how to address this
when there are many possible tasks to choose from. In
our study, we defined explicit guidelines for choosing po-
tential instances for inclusion using statistical criteria (e.g.,
DFFITS and DFBETA; prediction variance). In the current
experiment setting, model uncertainty does not equivalent
to model accuracy. This is primarily the reason why we
included a task complexity (complex for both humans and
AI/ML models) experimental factor to make the study
design more ecologically valid. It is true that model accuracy
cannot be assessed locally in real-world scenarios, which is
why the evaluation of model uncertainty is of paramount
importance. Also, note that this is why we used participants
from the general population in lieu of experts who would
exhibit gut hunches, domain knowledge, etc. Moreover, we
designed and picked the tasks intentionally so that those
that are “low uncertainty” are easy cases to evaluate while
the high uncertainty ones emulate perturbations or outliers
(e.g., students with low GPAs but high standardized scores
and with research experience). Because this is a white-box
model, we understand the mechanisms that produce the
predictions. Therefore, we were able to manipulate both
uncertainty and accuracy because the exogenous variables
are well-understood. For black-box models, we understand
that this would not always be the case.

Our study adopted limited types of static uncertainty
visualizations for conveying the model’s uncertainty to the
subject. Numerous uncertainty visualizations exist, and this
study explores only two. Future work should explore the
impact of uncertainty representations on model reliance
within a broader scope, including variations of uncertainty
visualizations and direct and indirect inform of uncertainty
in order to further explore more generalities of trust cali-
bration when presented with uncertainty visualization. In
addition to exploring a wider range of uncertainty visual-
izations, we can study how varying model prediction per-
formance can affect reliance behavior. We can utilize similar
experimental settings (e.g., testbed, procedure, protocol) to
investigate additional experimental factors, such as varying
model performance, by including other AI/ML models or
even possibly adding in a “nonsense” model as a more
extreme control condition in our future work.

Finally, trust calibration is a complex topic. For the
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regression model developed, the model performed better in
the low uncertainty conditions than in the high uncertainty
conditions. However, low uncertainty does not always mean
that the model is reliable. While a high-accuracy model
implies it might be advisable for a decision maker to adopt
the model recommendation under a low uncertainty condi-
tion, there are cases in which the model can still be wrong
about its recommendation, in which case the decision maker
should reject this recommendation. Our study does not
explore this condition. However, our results indicate that
participants calibrated their trust relative to the uncertainty,
and such a calibration could be harmful in different model
configurations. Future work is needed to further investigate
model reliance and trust calibration under various special-
ized populations and decision domain conditions, to tease
apart best practices in which visualization can be used
effectively to establish appropriate trust in those cases.

7 CONCLUSIONS AND FUTURE WORK

To investigate the impact of uncertainty visualization on
trust and reliance on model predictions, a study was con-
ducted on MTurk exploring two experimental factors: the
type of visual representation for conveying information and
the level of model uncertainty. For each prediction trial,
participants were first asked to inspect a model prediction
value (with or without uncertainty information) and then
decide to use the model prediction value or provide their
own prediction. The most obvious findings to emerge from
this study are that, for low uncertainty tasks, proper visual-
ization of model uncertainty can enhance an appropriate
adoption of model predictions. This was especially true
for an ordinal question-mark representation of uncertainty,
which potentially led to more appropriate adoption of
model predictions for low uncertainty tasks. Nevertheless,
the Violin Plot which provides a statistical distribution with
upper and lower limits was rated as the more satisfying
and trustworthy visualization. The higher rating reflects
that participants trusted the model more when Violin Plot
was presented and could partially explain why participants
did not reject model predictions for high uncertainty tasks
with Violin Plot. Participants often used different strategies
when they encountered difficult cases, exhibiting different
behaviors even when the same reason was offered in the
free response field of each task. For instance, “Due to high
uncertainty” is a shared reason that was cited for both
adoption (Table 5) and rejection (Table 6) behavior. We sur-
mise this is due to different inner intentions of participants,
which further experiments should be conducted to capture
participants’ actual intentions for adoption or rejection be-
havior using focused interviews. Taken together, despite the
ambiguity for high uncertainty tasks, these results suggest
that it is promising to calibrate people’s trust and reliance
on model predictions when proper uncertainty visualization
is presented. Different from previous studies that looked
at people’s overall reliance on black-box model outputs,
in this study we provided a visualization of uncertainty
and measured model adoption for each individual decision
case to better understand reliance behaviors given different
levels of model uncertainty.

A future study could assess the long-term effects of
model reliance based on workload. With the increase of
workload, people may not have adequate time and effort to
inspect every case. It would be interesting to explore when
people intend to rely on automated decision aids entirely in
the future – and to what extent visualization play a part in
that. Moreover, it would be beneficial to identify long term
reliance measures and design appropriate alert systems to
ping human counterparts at a proper frequency to inspect
model prediction results. Besides uncertainty, additional
studies could be conducted to investigate other factors in-
fluencing model reliance and human-machine trust, such as
the explainability of a predictive model, people’s familiarity
with the model, performance of a model, and application
scenarios (low-stake vs. high-stake). The targeted users of
the current study are without specializations in predictive
models and domain knowledge. It would be interesting to
assess if the impact of these visualizations would differ for
and between expert populations.

SUPPLEMENTAL MATERIALS

All supplemental materials can be found
on OSF at https://osf.io/mjrh9/?view only=
d8bdea8d469841b3913df59ecec9e612, released under a
CC BY 4.0 license. They include (1) CSV files containing
raw data collected from participants in the study and
confirmatory groups, (2) additional statistical test results
in Appendix A, (3) screenshots of experiment interface in
Appendix B, (4) post-task questionnaires in Appendix C,
and (5) SAS code implementation of GLMM.
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