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Finding Waldo: Learning about Users from their Interactions

Eli T Brown, Alvitta Ottley, Helen Zhao, Quan Lin, Richard Souvenir, Alex Endert, Remco Chang

Fig. 1. The interface from our user study in which participants found Waldo while we recorded their mouse interactions. Inset (a)
shows Waldo himself, hidden among the trees near the top of the image. Distractors such as the ones shown in inset (b) and (c) help
make the task difficult.

Abstract— Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems,
the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that
a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in
developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can
accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze
interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known
machine learning algorithms to three encodings of the users’ interaction data. We achieve, depending on algorithm and encoding,
between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting
performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus
of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in
one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that
interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-
initiative visual analytics systems.

Index Terms— User Interactions, Analytic Provenance, Visualization, Applied Machine Learning

1 INTRODUCTION

Visual analytics systems integrate the ability of humans to intuit and
reason with the analytical power of computers [24]. At its core, visual
analytics is a collaboration between the human and the computer. To-
gether, the two complement each other to produce a powerful tool for
solving a wide range of challenging and ill-defined problems.

Since visual analytics fundamentally requires the close collabora-
tion of human and computer, enabling communication between the
two is critical for building useful systems [41]. While the computer
can communicate large amounts of information on screen via visu-
alization, the human’s input to an analytic computer system is still
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largely limited to mouse and keyboard [28]. This human-to-computer
connection provides limited bandwidth [22] and no means for the hu-
man to express analytical needs and intentions, other than to explicitly
request the computer to perform specific operations.

Researchers have demonstrated that although the mouse and key-
board appear to be limiting, a great deal of a user’s analytical intent
and strategy, reasoning processes, and even personal identity can be
recovered from this interaction data. Machine learning researchers
have recovered identity for re-authenticating specific users in real time
using statistics over raw mouse interactions [30, 36, 37, 45] and key-
board inputs [27], but classified only identity, no user traits or strate-
gies. In visual analytics, Dou et al. [11] have shown that strategies can
be extracted from interaction logs alone, but at the cost of many hours
of tedious labor. Unfortunately these manual methods are not feasible
for real-time systems to adapt to users. The techniques needed to learn
about users and their strategies and traits in real time do not exist to
our knowledge.

In this paper, we demonstrate on a small visual analytics subtask
that it is indeed possible to automatically extract high-level semantic
information about users and their analysis processes. Specifically, by
using well-known machine learning techniques, we show that we can:
(1) predict a user’s task performance, and (2) infer some user person-
ality traits. Further (3), we establish that these results can be achieved
quickly enough that they could be applied to real-time systems.

Our conclusions draw from an online experiment we conducted toDigital Object Identifier 10.1109/TVCG.2014.2346575
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simulate a challenging visual search task that one might encounter as
a component of a visual analytics application with the game Where’s
Waldo (see Figure 1). The participants were given a visualization en-
abling a set of interactions (panning and zooming) to explore the image
and find the character Waldo. During the participants’ search process,
we collect a wide range of information about their interactions, includ-
ing the state of the visualization, and the time and location of all mouse
events.

Inspired partly by our visualization of the user paths through the
search image, we used this low-level interaction data to create three
encodings that capture three major aspects of visual analytics: data,
user and interface. The encodings are: (1) state-based, which captures
the total state of the software based on what data (portion of the image)
is showing, (2) event-based, which captures the user’s actions through
statistics of the raw mouse activity, and (3) sequence-based, which
encodes sequences of clicks on the interface’s buttons. The encoded
information is then analyzed using well-known machine learning tech-
niques such as support vector machines (SVM) and decision trees to
classify groups of users with performance outcomes and individual
differences.

The results of our analyses demonstrate that we can indeed automat-
ically extract users’ task performance, and infer aspects of their per-
sonality traits from interaction data alone. Further, task performance
can be estimated quickly enough to be used in a real-time system. De-
pending on which data encoding with its corresponding machine learn-
ing algorithm, we attain between 62% and 83% accuracy at differenti-
ating participants who completed the task quickly versus slowly, with
state-based yielding up to 83%, event-based up to 79% accuracy, and
sequence-based 79%.

With the goal of uncovering more intrinsic user factors, we applied
the same techniques to classify participants on personality traits, and
found promising signal. In particular, we can classify users based on
three of their personality traits: locus of control, extraversion, and neu-
roticism with 61% to 67% accuracy. The correlation between these
three personality traits and the participants’ performance are consistent
with previous findings in the visual analytics community on individual
differences [17, 33, 47].

Finally, on applying the techniques in real-time, we show that ac-
curate prediction of the user’s task performance and personality traits
can be achieved after observing users for a limited time period. Us-
ing the same encoding and analysis techniques described above, we
build classifiers based on a limited amount of the user’s interaction
logs. We demonstrate encouraging results for employing this technol-
ogy in real-time systems, e.g. with only two minutes of observation
on a task that requires an average of nearly eight minutes to complete,
we can correctly classify the users with an average of 84% of the final
accuracy.

Overall, our contributions to visual analytics are that we:

• Show that participants can be classified as fast or slow at the vi-
sual search task by applying machine learning to three encodings
of participants’ interaction data: (1) state-based, (2) event-based,
and (3) sequence-based.

• Apply these same techniques to classify participants based on
personality traits and demonstrate success for the traits locus of
control, extraversion and neuroticism.

• Evaluate the plausibility of applying this work to real-time sys-
tems by providing results using shorter timespans of data collec-
tion.

2 RELATED WORK

The goal of inferring information about a user based on his or her
interactions is generally referred to as “user modeling” and has been
an active area of research in a variety of domains. Although the field is
broad, our goal is narrower in that we specifically emphasize learning
users’ reasoning processes and characteristics as opposed to modeling
users’ tasks (as seen with the Microsoft Office Assistant, Clippy).

2.1 Analytic Provenance

Perhaps most related to our work is the research in the domain of an-
alytic provenance in the visual analytics community. Similar to our
goal, researchers in analytic provenance believe that the analysis pro-
cess during an analytic task is just as important as the analysis prod-
uct [32]. Through analyzing a user’s interactions, researchers in ana-
lytic provenance seek to identify how a user discovers insight and how
the same procedures can be stored and reapplied to automatically solve
other similar problems [44, 23].

Many systems have been developed in the visual analytics commu-
nity for logging, storing, and analyzing a user’s interactions and activ-
ities. For example, the GlassBox system by Cowley et al. [9] records
low-level events generated by the interface (such as copy, paste, win-
dow activation, etc.). At a higher level, VisTrails captures the user’s
steps in a scientific workflow [3]. Finally, at a model level, Endert et
al. showed that user interactions can be analyzed systematically, and
directly used to perform model steering operations [13]. Similarly,
other researchers have demonstrated that a user’s interactions can be
used to infer parameters of analytical models, which can then be pre-
sented visually [4, 15, 44]. Our work shares synergistic activities with
these prior works in that we also seek to extract higher-level informa-
tion from low-level user interactions. However, our goal is to develop
techniques that can automatically classify users on their characteris-
tics.

2.2 Inferring Cognitive Traits and Strategies

Much of the existing work in the visual analytics community on con-
necting the ways users solve problems with their cognitive abilities
has been based on eye tracker data [2, 29, 40]. For example, Lu et al.
demonstrated how eye gaze data can be used to determine important
or interesting areas of renderings and automatically select parameters
to improve the usability of a visualization system [29]. Steichen et
al. explored the use of eye tracking data to predict visualization and
task type [42, 40]. With varying degrees of accuracy they were able to
predict: (1) a user’s cognitive traits: personality, perceptual speed and
visual working memory, (2) the difficulty of the task, and (3) the visu-
alization type. These findings are particularly important for visual an-
alytics tasks as previous research has shown that users’ cognitive traits
can be used as predictors of speed and accuracy [17, 47]. Although re-
searchers have demonstrated the utility of eye gaze data, its collection
is often not suitable for dynamic or interactive systems where what the
user sees is not static. Instead of using eye gaze data, in this work we
forgo specialized sensors and analyze mouse interactions1.

Cognitive traits can also be correlated with proficiency in certain
domains. For instance, Ziemkiewicz et al. [47], Green and Fisher [17],
and Ottley et al. [33] demonstrate a significant correlation between
the personality trait locus of control (a measure of perceived control
over external events) and speed and accuracy on complex visualization
tasks. Though more subtle, they also found significant effects with the
personality traits extraversion and neuroticism. Other cognitive traits
such as perceptual speed [1, 6] and spatial ability [5, 46] have also
been shown to affect performance on visual analytics task.

Other types of traits can be used to adapt systems as well. In the
HCI community, Gajos et al. developed the SUPPLE system that can
learn the type and degree of a user’s disability by analyzing mouse
interaction data and generate dynamic and personalized interfaces for
each specific user [14]. Although the intended scenario is in the do-
main of accessibility, the approach and methods developed by Gajos
et al. can be generalized to other interfaces as well.

In the web usage mining community, researchers have used click
stream data for modeling and predicting users’ web surfing pat-
terns [12, 25, 26, 39]. Some of the techniques developed for these
web mining applications could be adapted to extend work like ours.
However, we focus on a more general but complex visual task, and on
learning about the users themselves as they complete the task.

1Recent work suggests that mouse movements in some interfaces are

strongly correlated with eye movements [7, 21]
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3 EXPERIMENT

To investigate what interaction data encodes about users of a system,
we sought a task that would simulate realistic tasks, and be difficult
enough that people would have to think about how to solve it (engage
strategies). Adopting a large visual search task satisfies our criteria:
it is easy to explain to participants, but not easy to do, and it is a ba-
sic component of typical visual analytics tasks. Specifically, we chose
Where’s Waldo [19], a famous children’s game consisting of illustra-
tion spreads in which children are asked to locate the character Waldo.
Finding Waldo is not easy thanks to the size of the image, which is
large enough to require panning and zooming, and the fact that it is
craftily drawn to provide a challenge. However, the target is known
and there is a guarantee that the task is possible.

We performed an online experiment, collecting interaction data as
our participants searched for Waldo in a large image (for our inter-
face, see Figure 1). While Waldo is attired in a distinct red and white
striped pattern (see Figure 1: his full image appears in the panel on
the right and his placement in the full spread is shown in inset (a)),
he is sometimes hidden behind objects, and the illustrations are filled
with distractors specifically designed to mislead the user (e.g., scene
elements covered in red and white stripes or the characters shown in
Figure 1 insets (b) and (c)). To locate Waldo, users have to visually
filter unimportant data, making him sometimes difficult to find. This
difficulty is also analogous to real-life applications of visual search,
where the target item may be partly occluded or obscured by objects
of similar color, shape or size.

3.1 Task
In the main task, participants were presented with a Where’s Waldo
poster and were asked to navigate the image by clicking the inter-
face’s control bar (Figure 1). The control bar was designed to resemble
Google Maps’ interface and afforded six interactions: zoom in, zoom
out, pan left, pan right, pan up and pan down. However, unlike Google
Maps, our interface does not allow dragging, rather all actions occur
through mouse clicks only.

The zoom levels for the interface range from 1 to 7 (level 1 being
no zoom and level 7 being the highest magnification possible). The
full image has resolution 5646 by 3607 pixels. At zoom level 1, the
full image is shown. At zoom level k, the user sees proportion 1/k of
the image. Panning moves the display by increments of 1/2k pixels.

The interface also includes two buttons not used for navigation:
Found and Quit. When the target is found, the participant is instructed
to first click Found then click on the target. The user must then confirm
the submission on a pop-up alert. We require multiple clicks to indi-
cate Waldo has been found to encourage participants to actively search
for the target instead of repeatedly testing many random guesses. If the
participant clicks Found but does not click on the correct location of
Waldo, the click is logged, but nothing happens visually. Unless the
participant quits the application, the experiment does not terminate
until Waldo is found correctly.

3.2 Data Collection
For our analysis, we recorded as much mouse activity as possible, in-
cluding both mouse click and mouse move events. Mouse click events
on interface buttons were logged with a record of the specific button
pressed and a time stamp. Similarly, we recorded the interface coor-
dinates of the mouse cursor and the timestamp for every mouse move
event.

To establish labels for our machine learning analysis of perfor-
mance outcomes and personality traits, we recorded both completion
time and personality survey scores for each participant. Because re-
searchers have shown [17, 33, 47] that the personality factors locus of
control (LOC), a measure of perceived control over external events,
and neuroticism and extraversion are correlated with performance on
complex visualization tasks, the survey was chosen to collect those
traits. Specifically, we use a twenty-seven-question survey which in-
cludes the Locus of Control (LOC) Inventory (five questions) [16] and
the Big Five Personality Inventory (twenty questions) [10] intermin-
gled. The survey also includes two attention checks which require

participants to give an obvious and precise response. These were used
to filter participants who did not pay attention while completing the
survey.

3.3 Participants
We recruited online unpaid volunteers, totaling 118 who successfully
completed the task by finding Waldo, of whom 90 successfully com-
pleted a personality survey and passed an attention check. Women
comprised 39 percent, and men 61 percent. Each participant used
his or her own computer and completed the task via the Internet.
They were required to have basic computer skills and to have never
seen the poster in the experiment before. The participants had a me-
dian education level of a master’s degree. Ages range from 18 to 45
(μ = 24 and σ = 2.8). Average task completion time was 469.5 sec-
onds (σ = 351.9).

3.4 Procedure
Participants were first asked to complete the personality surveys by
rating a series of Likert scale questions on a scale of 1 (strongly dis-
agree) to 5 (strongly agree). Next, participants read the instructions for
the main portion of the experiment and were shown the main interface
(Figure 1). They were instructed to manipulate the image by using
the six buttons on the control bar to find Waldo using as much time as
needed and told their completion time would be recorded. Once they
had successfully found the target, they completed a basic demographic
survey.

4 HYPOTHESES

We collected data at the lowest possible level to ensure that we cap-
tured as much information about the participants’ analysis process as
possible. Over the next four sections we discuss how we first visual-
ize this data, then create encodings to capture different aspects of the
participants’ interactions based on three core aspects of visual analyt-
ics: data, user, and interface. Specifically we encode (1) the portion
of the data being displayed, as high-level changes in program state,
(2) low-level user interactions, in the form of complete mouse-event
data, and (3) interface-level interactions, as sequences of button clicks
on the interface’s controls. We analyze our data with these encod-
ings with machine learning to evaluate the following hypotheses. First,
we hypothesize that participants who are quick at completing the task
employ different search strategies from those who are slow, and that
these differences are encoded in a recoverable way in the interactions;
second, that we can analytically differentiate users’ personality traits
based on interactions; and third, that these differentiations can be de-
tected without collecting data for the entire timespan of the task, but
instead can be found using a fraction of the observation time.

5 VISUALIZING USER INTERACTIONS

To explore our hypothesis that we can detect strategies employed by
different groups of participants, we first visualize their interactions.
Figure 2 shows example visualizations of user movement around the
Waldo image. The area of the visualization maps to the Waldo image.
Each elbow-shaped line segment represents a transition from one user
view of the image to another, i.e. from a view centered on one end-
point of the line to the other. Where these lines intersect with common
end-points are viewpoints of the image experienced by the participant
while panning and zooming. The lines are bowed (elbow shaped) to
show the direction of movement from one viewpoint to the next. Lines
curving below their endpoints indicate movement toward the left, and
those curving above indicate movement to the right. Bowing to the
right of the viewpoints indicates movement toward the bottom, and
bowing left indicates movement toward the top.

Zoom levels of viewpoints are not explicitly encoded, but the set
of possible center points is determined by the zoom level. High zoom
levels mean center points are closer together, so shorter-length lines
in the visualization indicate the user was exploring while zoomed in.
Note that diagonal movement through the Waldo image is not possible
directly with the participants’ controls. Instead, diagonal lines in the
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(a) Slow (b) Fast

(c) External LOC (d) Internal LOC

Fig. 2. Visualizations of transitions between viewpoints seen by participants during the study (see Section 5). Subfigures (a) and (b) show slow and
fast users respectively, as determined by the mean nomed splitting method (see Section 6). Subfigures (c) and (d) are split with the mean nomed
method based on locus of control, a personality measure of a person’s perceived control over external events on a scale from externally controlled
to internally controlled.

visualization are created because of zooming, i.e. when zooming out
requires a shift in the center point.

This visualization can be used to show the movements made by a
whole group of users by counting, for each flow line, the number of
users who made the transition between the two corresponding view-
points in the correct direction. In our examples, we are showing such
aggregations for four different groups of users. In each case, the thick-
ness of the lines encodes how many users in the group made that tran-
sition.

The top two sub-figures of Figure 2 compare users who were fast
versus slow at completing the task. Users were considered fast if their
completion time was more than one standard deviation lower than
the mean completion time, and correspondingly considered slow with
completion times more than one standard deviation above the mean
(for further explanation see Section 6). Users who were slow produce
a finer-grain set of lines, indicating they made more small movements
through the image using a higher zoom level and saw more of the
Waldo image in higher detail. Further, the extra lines in the lower left
of Figure 2 (a) as compared to Figure 2 (b) suggest that these slower
participants were led astray by the distractors in the image, e.g. the
people wearing similar clothing to Waldo seen in Figure 1, insets (b)
and (c).

Evidence of different strategies is also salient when visualizing re-
sults based on some personality factors. The personality trait locus of
control (LOC) has been shown to affect interaction with visualization
systems [17, 33, 47]. Figures 2 (c) and (d) visualize differences be-
tween participants with external (low) versus internal (high) LOC. In
these subfigures, we see that the external group zoomed in much fur-

ther on average, while the internal group performed more like the fast
group and was able to find Waldo with a smaller set of viewpoints.

These observations are readily seen through these visualizations,
but cannot be seen from inspection of the data, nor from machine
learning results. Encouragingly, these visualizations hint that there
are patterns to uncover in the data. The rest of this work explains our
analytical results in extracting them automatically with machine learn-
ing.

6 COMPLETION TIME FINDINGS

In Section 5, we presented visual evidence that our collected interac-
tion data encodes differences between groups of participants. How-
ever, being able to tell fast users from slow is more useful if it can be
done automatically. In this section, we delve into the data with an-
alytical methods, using machine learning to build predictors of task
performance outcomes. In particular, we adopt two common ma-
chine learning algorithms, decision trees [31], which learn hierarchi-
cal sets of rules for differentiating data, and support vector machines
(SVMs) [20], which learn hyperplanes that separate data points of dif-
ferent classes in the data space. We apply these, to three representa-
tions of the interaction data, created to capture different aspects of how
users interacted with the system.

Specifically, we tested three categories of representations of the par-
ticipants’ interactions, corresponding to some core aspects of visual
analytics (data, user, and interface): the views of the image data par-
ticipants encountered during their task (state-based), their low-level
mouse events (event-based), and their clicks on interface controls
(sequence-based). In this section we briefly explain how we derive the
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Table 1. Completion Time Classifiers - results for state space, edge
space and mouse events were achieved using support vector machines.
The n-gram space results use decision trees. These results were calcu-
lated using leave-one-out cross validation.

Data Representation Class Split Accuracy (%)
state space mean nomed 83

mean 79
edge space mean nomed 83

mean 63
mouse events mean nomed 79

mean 62
n-gram space mean nomed 79

mean 77

target participant groups used for our machine learning results, then
show, for each representation of the data, our results at predicting if a
given user would be fast or slow in completing the task.

We establish two different methods for labelling our participants
based on the collected data. Our analyses aim to classify participants
into discrete classes, fast and slow, but our recorded data includes
only each participant’s actual completion time. The first discretiza-
tion method is to apply the mean completion time (469.5 seconds) as
a splitting point: participants with a completion time lower than the
mean are assigned to the ‘fast’ group, and higher to ‘slow’. Partic-
ipants with scores exactly equal to the mean are excluded from the
data. In our results, this splitting method is indicated as mean. In the
second method, we assume that participants whose scores are within
one standard deviation of the mean have ‘average’ performance and
we exclude them from the study, labelling the rest as above. We re-
fer to this approach as the ‘no-medium’ splitting method, indicated in
results tables as mean nomed. The no-medium method allows us to
see that stronger patterns emerge for participants with more extreme
performance.

6.1 State-Based Analysis
In the visualization of participants’ movement through the Waldo im-
age (see Section 5), differences across groups of participants in how
they examine the data become salient. This discovery would be more
broadly applicable if the differences could be determined automati-
cally. We create two data representations emulating these visual forms
to search for patterns that differentiate users based on what parts of the
image they chose to look at. In the “state space” encoding, we capture
the portion of the data viewed as each participant navigated the Waldo
image. In the “edge space” encoding, we capture transitions partici-
pants made between viewpoints of the image. Applying support vector
machines (SVM) yields high-accuracy classifiers of completion time
with both representations.

The state space encoding can be represented by a vector space. We
consider the set s ∈ S of all visual states (given by view position and
zoom) that were observed by any user during completing the task.
We create a set of vectors ui, one representing each user, such that
ui = (counti(s1),counti(s2), . . . ,counti(s|S|)), where counti(s j) indi-
cates the number of times user i landed on state j. For the data from
the Waldo task, this process yields a vector space in 364 dimensions.

A similar vector space expresses the transitions between viewpoints
of the visualization, encoding how participants moved the viewpoint
around the image in their search for Waldo. Their strategies may be
encapsulated by how they directed the view during their search. In this
vector space, the set t ∈ T consists of all transitions made between any
viewpoints by any participant while completing the task. If each view-
point is represented by the location of its center, x, then T = {(k,m)}
where any participant made the transition xk → xm from position xk
to position xm while searching for Waldo. Each individual user’s vec-
tor is constructed as vi = (counti(t1),counti(t2), . . . ,counti(t|T |), where

counti(t j) indicates the number of times user i made transition t j .
The dimensionality of our derived transition-based vector space (edge
space) is 1134. The zoom levels are not explicitly encoded, but the set

Table 2. Features calculated for SVM analysis of mouse movement and
raw mouse click data. μ, σ , and μ ′

3 refer to the mean, standard devia-
tion, and third statistical moment. Pairwise indicates functions of pairs
of consecutive events.

Click Event Features Move Event Features
Clicks per second Movements per second
Avg. time between clicks Pairwise Euclidean distance (μ,σ ,μ ′

3)
% Left, %Right Pairwise x distance (μ,σ ,μ ′

3)
% Up, % Down Pairwise y distance (μ,σ ,μ ′

3)
% Zoom in, % Zoom out Pairwise speed (μ,σ ,μ ′

3)
% Found, % Quit Pairwise angle (μ,σ ,μ ′

3)
% Clicks on Image

of possible center points is determined by the zoom level. This feature
space is most closely related to the visualization described in Section
5 and seen in Figure 2.

The calculated vectors are used as a set of data features for input to
an SVM [43], a widely-applied machine learning method that works
on vector space data. SVMs are both powerful and generic, and work
by discovering an optimal hyperplane to separate the data by class.
For this work we focus on results from the default implementation
in the machine learning software package Weka [18], which means a
linear hyperplane, and slack parameter c = 1. This choice of an out-
of-the-box classifier is intended to demonstrate that these results can
be achieved in a straightforward manner.

Table 1 shows the accuracy of our completion time predictions, cal-
culated via leave-one-out cross validation. Both state and edge space
provide strong completion-time prediction results, with maximum ac-
curacies of 83%. However, these classifiers can only take into account
high-level changes in the software, as opposed to the lower-level phys-
ical actions that may characterize different participants, which leads us
to investigate different encodings for further analyses.

6.2 Event-Based Analysis

Users move their mouse throughout the process of working with a vi-
sual analytic system. Sometimes they move the mouse purposefully,
e.g. to click on a control, other times they hover over regions of inter-
est, and sometimes they make idle movements. Where the state and
edge space encodings fail to make use of this information, the event-
based data encoding described in this section derives from the most
raw interaction information available to capture innate behavioral dif-
ferences.

Previous machine learning work has shown that mouse event data
contains enough information to re-authenticate users for security pur-
poses [30, 36, 37, 45]. We adapted the data representation of Pusara
et al. [36] for our interaction data by calculating their set of statis-
tics over event information. Because we are predicting completion
time, we removed any statistics that we found to be correlated with
completion time. Table 2 shows the set of functions we used to en-
capsulate the participants’ mouse movements and raw clicks. This set
includes statistics on click information (number of clicks and time be-
tween clicks), raw button click information (percentage of clicks on
a particular button, e.g., “% Left” refers to the percentage of button
clicks on the “Pan Left” button), and derived mouse movement infor-
mation (such as the number of moves, and the mean, standard devi-
ation and third statistical moment of the distance and angle between
them). The set does not include total counts of clicks on different but-
tons or the total number of mouse movement events, because those
were strongly correlated with the total completion time. In total, we
use twenty-seven features, listed across the two columns of Table 2.

As with the state-space representations, we apply SVMs to the
mouse-event data. Table 1 shows the accuracy achieved with the
mouse-event data using SVM classifiers, calculated using leave-one-
out cross-validation. This approach manages a maximum score of
79%, which shows that there is strong signal in this low-level mouse
data. The input features may reflect subconscious mouse movement
habits more than actual intended actions, so the results indicate that
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the differences between populations may be driven by innate differ-
ences in approach or cognitive traits. Even though none of the features
is individually correlated with the completion time, these low-level in-
teraction statistics taken together are enough to analytically separate
fast from slow users.

6.3 Sequence-Based Analysis

The most direct representation of a user’s process may be the sequence
of direct interactions with software. Clicks are conscious actions that
represent the user’s intentions, and thus building classifiers based only
on these semantically relevant interactions may provide more insight
into why and how participants’ analytical strategies differ. For our
sequence-based analysis, we examine the sequences of button clicks
used by participants to achieve the task of finding Waldo. We connect
n-grams, a method from information retrieval for extracting short sub-
sequences of words from collections of documents, to decision trees,
a class of machine learning algorithms that produces human-readable
classifiers.

6.3.1 N-Grams and Decision Trees

The n-gram method from information retrieval is intended for text, so
an n-gram feature space must start with a string representation of data.
We assign a unique symbol to each of the seven buttons in the inter-
face: ‘L’ for pan left, ‘R’ for right, ‘U’ for up, ‘D’ for down, ‘I’ for
zoom in, ‘O’ for out, and ‘F’ for declaring Waldo found. Each partici-
pant’s total interactions are thus given by an ordered string of symbols.
We derive an n-gram vector space by considering each symbol a word,
and each participant’s sequence of words a document. Each dimen-
sion in the vector space then corresponds to one n-gram (i.e. one short
sequence of user actions). Participants are represented by a vector of
counts of the appearances of each n-gram in their interaction strings.

In our analyses we apply the J48 decision tree algorithm and
NGramTokenizer from Weka [18] to classify participants based on task
performance, and report accuracy scores from leave-one-out cross val-
idation. The effectiveness of n-grams is sensitive to the choice of n.
We empirically chose a combination of 2- and 3-grams as we found
that to best balance accuracy and expressiveness of our eventual ana-
lytic output. Our results at classifying participants on completion time
are shown in Table 1, revealing a top accuracy of 77% calculated with
leave-one-out cross validation.

6.3.2 Decision Tree Interpretation

One advantage to using a decision tree with n-grams is that the re-
sulting classifier is human-readable. Figure 3 shows the decision tree
produced for the completion time data in n-gram space, using a mean
split for classes. Each internal node shows a sequence of button clicks
and the branches are labeled with the number of occurrences needed of
that n-gram to take that branch. We can make several inferences about
strategy from this tree. The root node indicates the strongest splitting
criteria for the data. In this case, that node contains “L D”, the n-gram
corresponding to a participant clicking “Pan Left” then “Pan Down”.
If that sequence was clicked more than three times by anyone, that
indicated the person would finish slowly. This makes sense because
Waldo is in the upper right of the image. Moving in the wrong di-
rection too many times can be expected to slow down progress at the
task.

The “F U” and “D F R” nodes are also revealing. The “F” corre-
sponds to telling the program that Waldo is found. These “F” button
presses are not the last action, meaning they do not correspond to cor-
rectly finding Waldo. Instead, these sequences show participants’ false
guesses. Thus the tree suggests that participants who made several
false guesses finished the task more slowly.

Finally, the “O O I” and “L O I” nodes correspond to behavior
where the participant zoomed out and then back in again. The “O
I” component could indicate participants zooming out to gain context
before zooming in again. Alternatively, the same subsequence could
indicate participants zooming out and immediately back in, wasting
time.

Fig. 3. This is the decision tree generated as a classifier for fast versus
slow completion time with mean class splitting. Each internal node rep-
resents an individual decision to be made about a data point. The text
within the node is the n-gram used to make the choice, and the labels
on the out-edges indicate how to make the choice based on the count
for a given data point of the n-gram specified. Leaf nodes indicate that
a decision is made and are marked with the decided class.

The readability of this technique shows promise for identifying
trends in strategies and behaviors. We cannot guarantee that these in-
terpretations reflect the participants’ actual intentions, but rather sub-
mit these as possible reasons for what is shown in the tree. The real
power of using n-grams and decision trees on interaction sequences is
that it makes this type of hypothesizing possible, leading to deeper in-
vestigation when it is beneficial to understand how people are solving
a given task.

7 PERSONALITY FINDINGS

Prior research by Ziemkiewicz et al. [47] and Green and Fisher [17]
suggests that users will use a visualization system differently based on
their personality traits. Motivated by these findings, we explore the
efficacy of extracting personality traits from interactions. Specifically,
we apply the same data encodings and machine learning algorithms
used for the completion time analyses to predict users based on their
personality traits.

Instead of classes derived from completion time, we separate users
into low and high groups based on their scores on each personality in-
ventory: locus of control, extraversion, agreeableness, conscientious-
ness, neuroticism and openness to experience. Consistent with our
completion time analysis, we test both mean and mean nomed splits
(see Section 6). Table 3 summarizes our analysis results.

Across several techniques, we successfully classified users based
on their LOC, neuroticism, and extraversion scores. Of the personal-
ity traits, our techniques were best with LOC, yielding classification
accuracies as high as 67%. This supports the findings of Ziemkiewicz
et al. [47] that of the personality traits, LOC was the strongest predictor
of users’ performance on visualization search tasks. Consistent with
our findings, prior work also found significant effects with neuroticism
and extraversion [17, 47].



BROWN ET AL.: FINDING WALDO: LEARNING ABOUT USERS FROM THEIR INTERACTIONS 1669

(a) State Based (b) Edge Based

(c) Mouse Events (d) Sequence Based

Fig. 4. Graphs showing the ability to classify participants’ completion time as a function of the extent of data collected. The x-axis represents the
number of seconds of observation, or number of clicks for the sequence based data. The y-axis is the accuracy achieved after that amount of
observation. Accuracy values are calculated with leave-one-out cross validation, and use the mean splitting method (see Section 6).

Table 3. Personality Classifiers - all of these results are with SVM except
when using n-grams, which we pair only with decision trees

Data Representation Class Split Accuracy (%)
LOC

n-gram mean 67
Neuroticism

mouse events mean nomed 62
edge space mean nomed 64

Extraversion
edge space mean 61

8 LIMITED OBSERVATION TIME

The participants in our study were given as much time as they needed
to complete the Waldo task. So far, the presented results have taken
advantage of the full timespan of the collected data from their inter-
actions to classify them. Investigating the minimal timespan required
for this type of analysis is crucial for potential real-time applications,
so we evaluated our classifiers’ performance as a function of the data
collection time.

Figure 4 shows, for each of the different data representations,
graphs of how task performance classification improves (on trend)
with more observation time, i.e. more information available. Figure 5
shows one example of this behavior from personality trait classifiers.
The x-axis is the amount of data collected, and the y-axis is the accu-
racy achieved by training and classifying with that amount of data. For
all but the sequence-based analysis, the x-axis represents time. For the
button click sequences, the x-axis is based on the number of clicks in-
stead. Leave-one-out cross validation (LOOCV) and the mean-based
class definition are used for all these results.

Fig. 5. This graph shows the dependence of the ability to classify the
personality trait extraversion on the amount of time the participants are
observed. The x-axis represents the number of seconds of observa-
tion. The y-axis is the accuracy achieved after that amount of time.
This example uses the edge space encoding and the mean splitting
method (see Section 6). Accuracy values are calculated with leave-
one-out cross validation.

These graphs demonstrate two things. First, accuracy scores com-
parable to the final score can be achieved with much less than the max-
imum time. Note that close to the mean completion time, the encod-
ings are achieving much of their eventual accuracy scores: state-based,
64% instead of its eventual 83%; edge-based, 60% compared to 63%;
and sequence-based, 61% as opposed to 77%. These correspond to
77%, 95% and 79% of their final accuracy percentage scores, respec-
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tively.
Second, as expected, in most cases using more data allows for better

results. In the case of the mouse event data, the accuracy peaks before
reaching the average participant’s finishing time, about 470 seconds.

9 EXTENDED RESULTS

In this work, we focused on machine learning results produced with
off-the-shelf algorithms to emphasize that they could be re-applied in
a straightforward way. However, in the course of our investigation, we
applied a number of additional customizations to find the most accu-
rate classifiers possible with our data representations. These extended
results can be found in Appendix A. In the appendix, we explain the
additional methods we used and show the results we achieved by cus-
tomizing the classifiers. We show cases in which our tuning produced
higher-accuracy classifiers, and revealed signal with feature spaces or
class splitting criteria that otherwise could not encode certain traits.

10 DISCUSSION AND FUTURE WORK

In this work, we have shown, via three encodings, that interaction data
can be used to predict performance for real-time systems, and to in-
fer personality traits. Our performance predictions ranged in accuracy
from 62% to 83%. On personality traits, we were able to predict locus
of control, extraversion, and neuroticism with 61% up to 67% accu-
racy. Further, we found that with only two minutes of observation, i.e.
a quarter of the average task completion time, we can correctly classify
participants on performance at up to 95% of the final accuracy.

Given the above results, there are some fascinating implications and
opportunities for future work. In this section, we discuss the choice
of task and data representations, and how they may be generalized,
differences between the personality results versus those for completion
time, and future work.

10.1 The Waldo Task and Our Encodings
The Where’s Waldo task was chosen because it is a generic visual
search task. It is a simple example of an elementary sub-task that
comes up often in visual analytics: looking for a needle in a haystack.
The user can manipulate the view, in this case with simple controls,
and employ strategy to meet a specific task objective. In this section
we address how this experiment and our analyses may scale to other
systems. Because our set of encodings is based on three core aspects
of visual analytics, data, user, and interface, we frame the extensibility
of our approach in terms of data and interface.

The data in our experiment is the image in which participants search
for Waldo. At a data scale of twenty-megapixels, our state-based in-
teraction encodings, which are closely tied to the data because they
capture what parts of the image a participant sees, reach hundreds of
features to over 1000 features. As the size of the data (image) in-
creases, the state space and edge space may not scale. However, the
event-based and sequence-based encodings depend only on the inter-
face, and thus could scale with larger image data.

Conversely, the interface in our experiment is a simple set of
seven buttons. Increasing the complexity of the interface affects the
event-based and sequence-based encodings. The mouse-event fea-
tures include statistics about how often each button is pressed, and the
sequence-based encoding requires a different symbol for each button.
While these two encodings may not be able to scale to meet increased
interface complexity, the state-based encoding is unaffected by the in-
terface and thus could scale with the number of controls.

The three encodings we used in this paper can all be extracted from
the same interaction logs. Each one of them provides enough infor-
mation to recover task performance efficiently. Because of their com-
plementary relationships with the core concepts of interface and data,
their strength, as an ensemble, at learning from interaction data is not
strictly constrained by either interface or data complexity.

The scalability of the ensemble of encodings raises the possibility
that our approach could be generalized to other visual search tasks
and to complex visual analytics tasks. In particular, since users’ in-
teractions in visual analytics tasks have been shown to encode higher-
level reasoning [11], we envision that our technique could be applied

to other sub-tasks in visual analytics as well. Specifically, we con-
sider the Waldo task as a form of the data search-and-filter task in the
Pirolli and Card Sensemaking Loop [35]. We plan on extending our
technique to analyzing user’s interactions during other phases of the
analytic process such as information foraging, evidence gathering and
hypothesis generation.

10.2 Personality
Being able to demonstrate that there is signal in this interaction data
that encodes personality factors is exciting. However, none of the re-
sults for personality factors are as strong as those for completion time.
Not only are the overall accuracy scores lower, but we found that in
examining the time-based scores (as in Section 8), for many personal-
ity factors, there was not a persistent trend that more data helped the
machine learning (Figure 5 shows one of the stronger examples where
there is a trend).

While the prediction accuracies are low, our results are consistent
with prior findings [40] in the human-computer interaction commu-
nity on individual differences research. Taken together, this suggests
that although personality and cognitive traits can be recovered from
users’ interactions, the signals can be noisy and inconsistent. In order
to better detect these signals, we plan to: (1) explore additional ma-
chine learning techniques, like boosting [38] for leveraging multiple
learners together, and (2) apply our techniques to examine interactions
from more complex visual analytics tasks. We expect the latter to am-
plify results as Ziemkiewicz et al. [47] have shown that personality
trait effects are dampened when the task is simple. In their work, for
complex inferential tasks, the effects were more pronounced and po-
tentially easier to detect [47].

10.3 Future Work
This work is a first step in learning about users live from their interac-
tions, and leaves many exciting questions to be answered with further
research. The ability to classify users is interesting on its own, but
an adaptive system could test the feasibility of applying this type of
results in real time. Different cognitive traits may prove more fruitful
for adaptation, but even completion time could be used to adapt, by
giving new users advice if they start to follow strategies that would
lead to their classification as slow.

Further, of the data representations we evaluated, only the mouse
events, the lowest-level interactions, encode any information about
time passing during the task. The other representations do not en-
code the time between states or button presses, but that information
could be useful for a future study. For our sequence-based analysis,
our approach was to pair n-grams with decision trees for readability,
but there are plenty of existing treatments of sequence data that remain
to be tried for this type of data classification on visual analytic tasks,
including sequence alignment algorithms, and random process mod-
els, e.g. Markov models. Finally, in this work we focused on encoding
one aspect of data or interface at a time, but combining feature spaces
could be powerful. In fact, in experimenting with a feature space that
leverages multiple types of encodings, we achieved 96% accuracy on
completion time with mean nomed splitting2.

The experimental task was a simple version of a basic visual ana-
lytics sub-task. Our results could be strengthened by expanding the
experiment to test Waldo in different locations, or different stimuli
like maps with buildings and cars. The breadth of applicability could
be evaluated by testing other elementary visual analytics tasks such as
using tables to find data or comparing values through visual forms.

Our plans to extend this work expand on three fronts: (1) evaluating
additional personal traits, like cognitive factors such as working mem-
ory, to our analyses, (2) trying further machine learning algorithms and
encodings to learn from more of the information being collected, like
the times of the interactions and (3) extending experiments with dif-
ferent tasks including deeper exploration of visual search. We believe

2 Specifically, we tested a modified state space encoding where the zoom

level information is replaced by an identifier of the button click that caused the

state.
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there are many opportunities to extend this work, both experimentally
and analytically.

11 CONCLUSION

In this paper, we presented results of an online experiment we con-
ducted where we recorded participants’ mouse interactions as they
played the game Where’s Waldo. We broke the users into groups
by how long it took them to find Waldo (completion time) and their
personality traits. Visualizing the participants views of the data, we
showed that there are differences in strategies across groups of users.
We then applied machine learning techniques, and demonstrated that
we can accurately classify the participants based on their completion
time using multiple representations of their interactions: visualiza-
tion states, low-level mouse events, and sequences of interface button
clicks. By examining artifacts of our machine learning work with these
sequences, we were able to identify short subsequences of interactions
that identify groups of users. These human-readable classifier results
hint at user strategies across groups. We were also able to detect and
classify the participants based on some personality factors: locus of
control, extraversion, and neuroticism. Finally, we showed the depen-
dence of the machine learning results on the observation time of the
participants.

A APPENDIX: EXTENDED RESULTS

Though we demonstrated that completion time and personality can
be modeled from raw interactions can be done directly with off-the-
shelf tools using default settings, further attention to detail can yield
stronger classifiers. In this appendix, we discuss some additional re-
sults that we achieved by tuning the algorithms, including applying
principal component analysis (PCA), and optimizing the parameters
of support vector machines (SVMs).

Table 4. Additional SVM Results - all results are calculated using leave-
one-out cross validation.

Data Representation Class Split Classifier Accuracy (%)
Completion Time

edge space mean nomed SVMpoly 87
mean SVMpoly 72

mouse events mean nomed SVMpoly 88
mean SVMpoly 82

LOC
edge space mean SVMpoly 62
state space mean nomed SVMpoly 63
state spacePCA mean nomed SVM 63

Neuroticism
edge space mean nomed SVMpoly 68
state spacePCA mean nomed SVM 68

The SVM algorithm is sensitive to a slack parameter [8] and to the
choice of kernel. Common practice is to address this by using a pa-
rameter search to find the best parameter values [20]. In the context
of deploying the best possible classifier for a given dataset, that entails
simply trying different choices of the parameter (or sets of parame-
ters) and evaluating the classifiers until the best can be reported. Since
our goal is instead to evaluate the classifiers and encodings themselves
for this type of data, we take the approach of validating the algorithm
of classifier+param-search. As usual for cross validation, the data is
split into k folds. Each fold takes a turn as the test data, while the
other folds are used for training, providing k samples of accuracy to
be averaged for a total score. In testing a classifier+param-search al-
gorithm, the algorithm being evaluated on one fold is one that chooses
a parameter by testing which value produces the best classification re-
sult. To evaluate “best classification result”, another (nested) cross
validation is needed. The original fold’s training data is split into folds
again and cross validation is used over those inner folds to pick the
optimal parameter. Weka implements a more sophisticated version of
this practice that allows optimizing two parameters at once (generally

referred to as grid search) and uses optimizing heuristics to limit the
number of evaluations [34]. We have used this implementation to run
a grid search that optimizes over (1) slack parameter and (2) degree of
polynomial for kernel (1 or 2, i.e. linear or quadratic). In Table 4, this
classifier is called SVMpoly. This table shows highlights of the results
that we produced with this technique.

Another helpful factor in working with SVMs on high-dimensional
data is principal component analysis. PCA projects the high-
dimensional data into a lower-dimensional space defined by the eigen-
vectors of the original data. The number of eigenvectors is chosen
to make sure that 95% of the variance in the data is accounted for in
the low-dimensional approximation3. Applying PCA to the data space
was particularly helpful in data representations like state space, which
has a high degree of dimensionality. In Table 4, data representations
with PCA applied are indicated by the subscript PCA.

Overall, the results in Table 4 show cases in which our tuning
produced higher-accuracy classifiers, and revealed signal with feature
spaces or class splitting criteria that otherwise could not encode certain
traits. The completion time results for the edge space and mouse event
feature spaces are improvements of up to 32%. Specifically with edge
space encoding and mean split, SVMpoly offers 82% accuracy instead
of 62% with off-the-shelf SVM. In our earlier analyses, we did not find
sufficient signal to report on LOC with any state-based encodings, but
using PCA or parameter search makes that possible. Through apply-
ing standard methods for tuning SVM, we gained higher accuracy over
our existing results, and demonstrated connections between encodings
and traits that were otherwise obscured.
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